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Abstract 

Non-Fungible Token (NFT) creators use digital signatures to ensure the ownership, authenticity, integrity, and non-
repudiation of their digital works. However, if the private key is compromised, an attacker can generate unauthor-
ized NFTs by using the creator’s private key to issue valid signatures. These valid but unauthorized signatures will 
be accepted in the NFT market and cannot be revoked. Even if the NFT creators update their private-public key 
pairs, they cannot deny the NFTs generated by the attacker. To mitigate these risks, we propose revocable signature 
by introducing commitment mechanism and an Auxiliary Embedded Key (AEK) into the signature, while the regu-
lar verification process does not involve this AEK. If a valid but unauthorized signature is detected and needs to be 
revoked, AEK will be disclosed to perform the revocation operation. To illustrate the application of revocable sig-
natures in NFT, we design and implement a revocable Elliptic Curve Digital Signature Algorithm (ECDSA) scheme 
with provable security. Experimental evaluations on the FIPS-recommended elliptic curves show that the perfor-
mance of revocable ECDSA is comparable to the basic ECDSA, with additional 0.0303 s (P-256 curve) and 0.15 USD gas 
fee in Remix VM for revoking a signature.
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Introduction
Motivation
The Non-Fungible Token (NFT) has emerged as a corner-
stone of digital ownership, enabling creators to authenti-
cate and trade unique digital assets through blockchain 
technology (Hammi et  al. 2023; Wang et  al. 2021). It 
relies on digital signature technology to ensure unique-
ness of ownership, authenticity, non-tamperability, and 
verifiability of the creator’s identity. Thus, the private 

key of digital signature scheme plays an important role 
in NFT application scenarios. As illustrated in Fig. 1, the 
creator needs to use his private key to sign both minting 
requests for new NFTs and transaction information for 
listing them.

If the private key is compromised, an attacker can gen-
erate legitimate and irrevocable NFTs by generating valid 
signatures on the minting requests using the private key. 
Specifically, the attacker can send requests to the smart 
contract. Then the smart contract mints NFTs, associates 
them with attacker’s metadata, and registers these tokens 
on-chain under the identity of the legitimate creator. Fur-
thermore, the attacker can authorize the list by signing 
the transaction information using the leaked private key, 
which will pass the verification on the blockchain. Since 
NFTs are often traded on decentralized marketplaces and 
immediately accessible to collectors or automated agents, 
valid but unauthorized tokens may be sold before the 
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real creator becomes aware of the breach. The economic 
value, reputation, and provenance guarantees associated 
with NFTs are therefore critically undermined, and given 
the immutable nature of blockchain records, dealing with 
such an incident is extremely difficult without additional 
cryptographic mechanisms.

For instance, in 2020, after the death of digital art-
ist Qing Han, fraudsters seized the opportunity to sell 
her works of art as NFTs, the most popular sold for $69 
million (Kwan 2020). In September 2022, the website 
of renowned graffiti artist Banksy was hacked, leading 
to a page promoting and selling his NFT works, which 
resulted in a collector paying $336,000 for a valid but 
unauthorized digital art (Davidson 2022). Tyler Hobbs, 
the creator of the Art Blocks project “Fidenza”, publicly 
criticized the SolBlocks platform for selling copies of his 
work using his code (Quarmby 2021). Additionally, the 
art of Derek Laufman was sold by a fraudulent account 
impersonating his identity (Stephen 2021). Such scams 
are numerous and widespread.

Although there exist two types of methods that spe-
cifically focus on the security of private keys, none of the 
existing solutions can effectively address the revocation 
of signatures issued by attackers with leaked private keys. 
Traditional key rotation (Everspaugh et al. 2017; Vijaya-
kumar et al. 2011) limits the exposure window of private 
keys by periodically updating them, however, it cannot 
revoke signatures issued by attackers under leaked pri-
vate keys during the interval from the leaking to updat-
ing of private keys. Threshold cryptography (Desmedt 
1994) reduces the risk of a single point of compromise 

by splitting the private key into multiple segments and 
dynamically updating the segments during key rotation. 
However, if shares are eventually reconstructed (e.g., 
through collusion or attack persistence), the private key 
will be leaked ultimately. Threshold schemes focus on 
preventing compromise, not revoking its consequences. 
In general, applying these schemes directly to digital 
signatures only mitigates the future risk of private key 
compromise but cannot solve the problem of misuse of 
leaked private keys. In short, how to revoke signatures 
issued by leaked private keys remains a significant and 
unaddressed problem.

Our work
To address the problem, this paper proposes a new type 
of signature scheme, named as revocable signature.

Generic construction of revocable signature. Com-
pared to existing methods that focus on preventing 
future compromises but fail to address the legacy risks of 
past key exposures, the revocable signature scheme ena-
bles signature revoking by integrating commitment and 
revocation mechanisms in a digital signature scheme.

The basic signature scheme includes three algorithms: 
key generation algorithm, signing algorithm, and verifica-
tion algorithm. Revocable signature introduces a revoke 
algorithm into a basic signature scheme. During key 
generation, an Auxiliary Embedded Key (AEK) is gen-
erated in addition to a pair of public and private keys. 
Additionally, a public commitment of AEK is released 
as AEK -com . The signing algorithm embeds AEK into 
signatures such that valid but unauthorized signatures 

Fig. 1  Digital signature in the NFT system. It is involved from Phase 1 when the creator mints an NFT to Phase 2 and 3 when the NFT is listed 
in the marketplace and then purchased by a buyer



Page 3 of 19Xia et al. Cybersecurity            (2026) 9:97 	

(generated without AEK) can be distinguished from legal 
ones and thereby revoked via the revoke algorithm. The 
verification algorithm remains the same as in a basic sig-
nature scheme.

It is crucial to note that only the legitimate owner is 
capable of running the revoke algorithm, since the revoke 
algorithm requires the input AEK, which is never dis-
closed publicly. Since the private key-leakage attacker 
does not have AEK, they can only issue signatures that 
are checked to be valid via the verification algorithm but 
detected as unauthorized through the revoke algorithm. 
These signatures are thereby referred as “valid but unau-
thorized” signatures.

Even if an attacker is aware of the existence of AEK 
and its role in the revocation mechanism, the incentive 
to generate valid but unauthorized signatures remains 
strong in many real-world settings. This is because such 
signatures are immediately accepted as valid by stand-
ard verification algorithms and can be used to trigger 
irreversible operations before revocation takes effect. 
In time-sensitive or high-value contexts, such as the 
NFT markets in this paper, the attacker may profit from 
transient validity before revocation is executed, making 
forgery attempts still attractive despite the risk of later 
exposure and invalidation.

Instantiation of revocable signature. Following the 
idea of revocable signature, this paper designs a concrete 
Revocable Elliptic Curve Digital Signature Algorithm 
(R-ECDSA) scheme from the basic ECDSA (Johnson 
et  al. 2001). The reason for choosing ECDSA is that it 
has been widely adopted by mainstream blockchain sys-
tems, which serve as the underlying infrastructure for 
NFT trading marketplaces (e.g., OpenSea). The proposed 
R-ECDSA ensures that even if an attacker is able to steal 
the private key and generate a valid but unauthorized sig-
nature that can be accepted in the NFT marketplaces, the 
true owner of the private key can deny and revoke it. The 
existential unforgeability of R-ECDSA is proved based 
on the assumption of ECDSA’s existential unforgeability 
against chosen-message attacks (EU-CMA). A prototype 
of the scheme is realized on an ordinary laptop (Apple 
M2 pro chip, 16.00-GB memory). The computational 
overhead of R-ECDSA and basic ECDSA is compared on 
the basis of three elliptic curves P-256, P-384 and P-521.

For the most widely used NIST P-256 elliptic curve, 
the time of key generation algorithm is 0.0103  s of 
R-ECDSA vs 0.0087  s of basic ECDSA. The time of 
signing algorithm is 0.0073 s vs 0.0149 s, and the time 
of verification algorithm is 0.0149  s vs 0.0147  s. The 
results show that the efficiency of the three basic algo-
rithms in R-ECDSA is comparable to those in basic 
ECDSA within the margin of error. The revocation 

algorithm takes only 0.0303 s, which is also acceptable 
for real-world deployment. We also test the gas con-
sumption of the revocation algorithm as it will be per-
formed by smart contracts in real-world scenarios. The 
result is 87,566 gas, that is 0.15 USD according to the 
exchange rate of August 9, 2025.

In summary, our primary contributions are con-
cluded as following: 

1.	 We formally define the revocable signature scheme, 
whose core idea is to decouple cryptographic valid-
ity from true authorization, enabling the signer to 
revoke valid but unauthorized signatures gener-
ated by a leaked private key. We further introduce a 
new security model, existential unforgeability under 
chosen-message and private-key leakage attacks (EU-
CM&PLA).

2.	 We design R-ECDSA, a practical instantiation of the 
revocable signature built on ECDSA and fully com-
patible with existing verification logic for seamless 
adoption.

3.	 We provide a formal security analysis of R-ECDSA 
based on the standard EU-CMA security assumption 
of ECDSA.

4.	 We implement a full prototype and demonstrate its 
real-world feasibility. Our evaluation confirms that 
R-ECDSA adds negligible computational overhead 
and economically viable gas cost, making it a practi-
cal solution for securing NFT ecosystems.

Organization
The remainder of this paper is organized as follows. 
Section Related works provides an overview of related 
work. Section  Preliminary presents the mathematical, 
cryptographic and smart contract background. Sec-
tion  Generic constructions presents the formal defini-
tions of revocable signature. Section  Instantiation of 
revocable signature presents the R-ECDSA scheme, 
proves its security, and evaluates its performance, 
respectively. Section  Use case illustrates the applica-
tion of revocable signature in the NFT system. Finally, 
Section  Conclusion concludes the paper and proposes 
future work.

Related works
This section reviews current revocation schemes in the 
blockchain and existing revocation schemes in the field 
of digital signature.



Page 4 of 19Xia et al. Cybersecurity            (2026) 9:97 

Revocation in blockchain
Although immutability is a core feature of blockchain, it 
presents certain challenges in practical applications, such 
as the inability to revoke or update transactions that have 
already been completed, even when errors are identified. 
To address this problem, revocation in blockchain has 
attracted attentions in this field. Several specific meth-
ods tailored to different revocation needs have been 
proposed. Existing methods can be classified as arbitra-
tion-based revocation, rollback-based revocation and 
escrow-based revocation. Below we review some repre-
sentative approaches and compare them in Table 1.

Arbitration-based revocation (Deuber et al. 2019; Ren 
et al. 2022) is a mechanism to achieve authority/decision 
revocation through a pre-determined arbitration agree-
ment, where the revocation is triggered by a multi-party 
verification or authoritative ruling. For example, Lesaege 
et al. (2019) is a decentralized application built on top of 
Ethereum. It relies on game theoretic incentives to have 
jurors rule cases correctly. However, its core mecha-
nism relies on a network of on-chain jurors rather than 
creator-autonomous execution of operations, which fun-
damentally conflicts with the creator autonomy that the 
NFT ecosystem values. More critically, the dispute reso-
lution protocol may result in high latency, which prove 
fatal in the fast-paced NFT marketplace. An unauthor-
ized NFT could be minted, sold, and traded multiple 
times before arbitration yields a verdict, by which point 
the attacker will have already secured their profits and 
exited. Finally, the “fairness”of arbitration requires addi-
tional mechanisms to ensure, making it vulnerable to 
attacks or manipulation.

Rollback-based revocation (Liao et  al. 2023; Peng and 
Xu 2022) is the revocation of a recent operation or privi-
lege change after a security threat has been detected, 
restoring the state of the system to a previous point in 
time. For example, some customized NFT contracts 
(Groschopf et al. 2021; Kubilay et al. 2019; Hu et al. 2020) 
add control permissions on top of the basic standard to 
support the rollback of erroneous transactions. However, 

this requires the revocation logic to be predefined in the 
smart contract, which increases the complexity of the 
operations. Additionally, rollback can mistakenly hurt 
other legitimate transactions signed with the same pri-
vate key. For instance, if a creator legitimately mints 10 
NFTs and an attacker fraudulently mints an 11th, a roll-
back would indiscriminately jeopardize all 11 NFTs, 
thereby punishing innocent collectors who purchased 
the legitimate assets. Furthermore, if the legitimate NFTs 
have already been worked as collateral or used in games, 
the rollback would trigger cascading failures.

Escrow-based revocation (Kumar and Tripathi 2019; 
Rajalakshmi et  al. 2018; Guo et  al. 2023) is the revoca-
tion of a transaction if a disputed issue arises prior to 
closing, which can be completed by the escrow provider. 
In certain transactions, assets are held in an escrow 
account until all parties confirm the transaction’s valid-
ity. If any anomalies are detected, particularly when dis-
putes, errors, or the need for intermediary intervention 
arise, the escrow provider can stop or reverse the trans-
action. Escrow-based revocation is designed to mediate 
the transaction phase (e.g., a buyer’s payment and seller’s 
transfer). However, a core problem we address is fraudu-
lent minting, where an attacker uses a leaked private key 
to call the mint function directly. This minting opera-
tion entirely bypasses any escrow. Consequently, escrow 
schemes are completely ineffective in preventing the cre-
ation of a valid but unauthorized NFT. Additionally, The 
revocation of a transaction in an escrow account typically 
relies on pre-agreed conditions and the intervention of 
intermediaries. As the process becomes more complex, it 
can impact user experience.

In summary, arbitration-based revocation imposes 
substantial governance overhead and latency in deci-
sion-making due to its reliance on third-party adjudica-
tion processes, contravening the foundational principle 
of decentralized autonomy. Rollback-based revocation 
forces a state reset that destroys the finality of the trans-
action and triggers an on-chain historical credibility 
crisis. Escrow-based revocation relies on a third-party 

Table 1  Existing revocation solutions in blockchain

Schemes Revocation method Limitations (or characteristics)

Arbitration-based revocation (Deuber et al. 2019; Ren et al. 2022; 
Lesaege et al. 2019)

Multi-vote decision Slow processing, possible vote 
manipulation

Rollback-based revocation (Liao et al. 2023; Peng and Xu 2022; Gro-
schopf et al. 2021; Kubilay et al. 2019; Hu et al. 2020)

Contract logic decision May affect normal trading

Escrow-based revocation (Kumar and Tripathi 2019; Rajalakshmi et al. 
2018; Guo et al. 2023)

Third-party intermediary decision Intermediaries may have security risks

Proposed scheme AEK decision No third-party dependency, condi-
tional revocation
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escrow agent, which carries the risk of a single point of 
failure and requires preset conditions and intermedi-
ary interventions, which is not flexible enough. None of 
these methods can revoke already-minted NFTs signed 
under leaked private keys because the verification logic 
on-chain cannot distinguish legitimate from unauthor-
ized signatures. Our solution of revocable signature elim-
inates unnecessary steps by enabling revocation through 
verification of AEK when needed. It requires no addi-
tional entities, as the true owner of the private key can 
independently perform the revocation operation.

Revocation in signature schemes
Revocation has been explored in digital signature 
schemes such as time-deniable signature, ring signa-
ture, attribute-based signature, group signature and so 
on. Among these schemes, some use the term “denial", 
while others adopt “revocation". To maintain consistency, 
we unify this concept as “revocation”in our paper, where 
both terms convey the same semantic meaning in our 
context. While at the first glance revocation (or denial) in 
these signature schemes is close to the revocation in our 
work, the problems they address are totally different.

“Denial" in time-deniable signatures (TDS) (Beck et al. 
2023) is used to refer to denying the creation of older 
signature content. It restricts signature authenticity to a 
specific time period. Beyond this period, signatures that 
do not provide strong authentication become easier to 
forge, enabling the signer to plausibly deny their creation. 
While TDS is effective in applications like Domain Keys 
Identified Mail (DKIM)-signed emails, it cannot revoke 
valid but unauthorized signatures caused by the leakage 
of private keys within any period.

The term “denial”and “revocation”are also used in 
some ring signature, attribute-based signature and cer-
tificateless signature schemes. However, “denial”and 
“revocation”in these works are not about the revocation 
of signature. In traditional ring signature schemes, the 
complete anonymity of signers may potentially allow 
malicious signers to shift blame onto other group mem-
bers. To address this issue, Komano et al. (2006) and Gao 
et  al. (2019) propose deniable ring signature schemes 
(DRS), which is designed to enable signers to dem-
onstrate their non-involvement in generating specific 
signatures through zero-knowledge proofs. This mecha-
nism allows legitimate members to proactively deny 
illegitimate signatures via interactive verification pro-
tocols, thereby ensuring that innocent participants can 
effectively exonerate themselves from false accusations 
while preserving the fundamental properties of signer 
anonymity. The schemes of Liu et al. (2007) and Bresson 
and Stern (2001) grant a designated set of authorities the 
ability to revoke the signer’s anonymity. Authorities can 

reveal the true identity of the signer when necessary, pre-
vent abuse of anonymity, and enforce accountability for 
malicious behavior. Escala et  al. (2011) also to prevent 
anonymous abuse, propose a revocable attribute-based 
signature based on commitment program and zero-
knowledge proofs. Sun et al. (2013) try to address mem-
bership revocation by improving the composition of the 
signer’s private key thus better managing signers.

In summary, while it seems that the terms of 
“denial”and “revocation”in these schemes are close to the 
revocation of signatures in this paper, they deal with dif-
ferent research questions. Existing deniable and revoca-
ble signature schemes provide no solution to address the 
problem of revoking valid but unauthorized signatures 
caused by private key leakage.

Preliminary
This section reviews the cryptographic and mathematical 
foundations of revocable signature, then introduces the 
smart contract. Symbols used in this paper are explained 
in Table 2.

Elliptic Curve Cryptography (ECC)
Let Fp be a finite field of p elements, where p is a prime. 
An elliptic curve E that is suitable for cryptography is 
defined by the equation in the variables x and y of the 
form:

where a, b ∈ Fp, 4a
3 + 27b2 �= 0 mod p . For detailed 

information about elliptic curves, we refer the reader to 
Silverman’s book (Silverman 1986).

An elliptic curve group G is defined by all points on 
the elliptic curve plus a point O at infinity and addition 
operation + among these points. The exponentiation in 
G is defined as

(1)y2 = x3 + ax + b mod p

Table 2  Notations

Symbol Description

Fp A finite field with prime p

E An elliptic curve over a prime field Fp
G An elliptic curve group

G A base point on elliptic curve group G

q The order of G

Z∗q The set of integers {1, ..., q− 1}

← Sampling an instance from a distribution

⊥ Halt
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for any point Q ∈ G and a positive integer n, which is also 
known as scalar multiplication.

The security of ECC is based on the difficulty of Elliptic 
Curve Discrete Logarithm Problem (ECDLP).

Definition 1  (ECDLP) Given a point M ∈ G of order q, 
and a point N = l ·M where l ∈ Z∗

q , determine l.

Digital signature
Formal definitions
A digital signature scheme is defined by a tuple of proba-
bilistic polynomial time (PPT) algorithms (Gen, Sign, Ver-
ify) such that:

•	 (pk , sk) ← Gen(1�) : Given a security parameter � , 
the Gen algorithm outputs a public-private key pair.

•	 σ ← Sign(m, sk) : Given a private key sk and a mes-
sage m, the Sign algorithm outputs the signature σ.

•	 b ∈ {0, 1} ← Verify(m, σ , pk) : Given a message m, 
signature σ , and public key pk, the Verify algorithm 
outputs 1 indicating that the signature is valid or 0 
otherwise.

The correctness of a digital signature scheme is defined 
as follows.

Definition 2  (Correctness of Digital Signature) For 
any pair of (pk , sk) ← Gen(1�) , if σ ← Sign(m, sk) , then 
1 ← Verify(m, σ , pk).

Security of digital signature
EU-CMA is a widely used security model for digital 
signature schemes. It is defined through the EU-CMA 
security game, where an adversary A interacts with a 
challenger C and tries to break the signature scheme. The 
game proceeds as follows:

Setup. Let � be the system parameters. C runs the key 
generation algorithm to generate a key pair (pk,  sk) and 
sends pk to A . C keeps sk to respond to signature queries 
from A.

Query. A makes signature queries on messages that are 
adaptively chosen by A itself. For a signature query on 
the message mi , C runs the sign algorithm to compute σi 
and then sends it to A.

Forgery. A returns a valid but unauthorized signa-
ture σ ∗ on some m∗ and wins the game if σ ∗ is a valid 

n · Q = Q + · · · + Q
︸ ︷︷ ︸

n

signature and a signature of m∗ has not been queried in 
the query phase.

The advantage ε of A winning the game is the probabil-
ity of returning a valid signature.

Definition 3  (EU-CMA) A signature scheme is ( t, qs, ε
)-secure in the EU-CMA security model if there exists 
no adversary who can win the above game in time t with 
advantage ε after it has made qs signature queries.

ECDSA
The widely adopted ECDSA signature scheme is param-
eterized by an elliptic curve group G generated by a base 
point G. The algorithm makes use of a hash function 
H : {0, 1}∗ → Z∗

q . The three algorithms of ECDSA are 
explained as follows:

•	 Key generation algorithm: 

1.	 Select a random integer d ∈ Z∗
q as the private key, 

where q is the order of the elliptic curve group.
2.	 Compute h = d · G as the public key.

•	 Signing algorithm: 

1.	 Select a random integer k ∈ Z∗
q.

2.	 Compute k · G = (x1, y1).
3.	 Compute r = x1 mod q . If r = 0 then go to step 

1.
4.	 Compute s = k−1(H(m)+ dr) mod q . If s = 0 

then go to step 1.
5.	 Output the signature (r, s).

•	 Verification algorithm: 

1.	 Verify that r and s are integers in the interval 
[ 1, q − 1].

2.	 Compute H(m).
3.	 Compute w = s−1 mod q.
4.	 Compute u1 = H(m)w mod q and 

u2 = rw mod q.
5.	 Compute u1 · G + u2 · h = (x′1, y

′
1).

6.	 Compute r′ = x′1 mod q.
7.	 Accept the signature if and only if r′ = r.

The EU-CMA security of ECDSA has been proved in 
Brown (2005). We will use it as an assumption in the 
security proof of R-ECDSA.
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Smart contract
The functionalities of an NFT are based on the underly-
ing smart contracts. The smart contract encodes the rules 
and guidelines that define the token and its specific prop-
erties. When specific criteria are satisfied, a smart con-
tract will automatically run and carry out its intended 
function. Digital contracts regulate token ownership and 
exchanges in NFTs.

Generic constructions
This section presents system overview, threat model and 
security model of revocable signature. Then we discuss 
the motivations of the adversary.

System overview
A revocable signature scheme is defined 
by a tuple of four PPT algorithms 
( KeyGen, Sign, Verify, Revoke ). An epoch e in 
our paper is formally defined as a discrete temporal inter-
val bounded by an execution of KeyGen and Revoke . 
Four algorithms are described as follows:

•	 (ske, pke,AEKe,AEK -come) ← KeyGen(�, n ): On 
input security parameter � and the maximum num-
ber of epochs n ∈ O(2� ), the generation algorithm 
outputs a secret and public key pair ( ske, pke ), and an 
Auxiliary Embedded Key pair ( AEKe,AEK -come ) in 
epoch e ∈ [n].

•	 σe ← Sign(ske,AEKe,m ): On input private key ske 
and Auxiliary Embedded Key AEKe for epoch e ∈ [n] 
and a message m ∈ M , the signing algorithm outputs 
a signature σe.

•	 b ∈ {0, 1} ← Verify(pke,m, σe ): On input public 
key pke , a message m, and a signature σe for epoch 
e ∈ [n] , the verification algorithm outputs 1 indicat-
ing that the signature is valid or 0 otherwise.

•	 b′ ∈ {0, 1} ← Revoke(σe,AEKe,AEK -come ): On 
input a signature σe and Auxiliary Embedded Key 
pair ( AEKe,AEK -come ) for epoch e ∈ [n] , the revo-

cation algorithm outputs 1 indicating that the signa-
ture is unauthorized (need to revoke) or 0 otherwise.

The four algorithms are also illustrated in Fig. 2. The 
correctness of revocable signature is defined as follows:

Definition 4  (Correctness of revocable signature) 
For any pair of (ske, pke,AEKe,AEK -come) ← KeyGen

(�, n ), if σe ← Sign(ske,AEKe,m ), then 1 ← Verify

(pke,m, σe ) and 0 ← Revoke(σe,AEKe,AEK -come).

Security definition
Security definition includes the definition of threat 
model and security model.

Threat model
We assume the following powers of adversary against a 
revocable signature scheme.

First, the adversary is able to request the signer to 
sign certain messages and obtain the corresponding 
signature pairs (messages and their corresponding sig-
natures). This allows the adversary to accumulate infor-
mation about the signer and the signing process. The 
adversary can then use the obtained signature pairs to 
analyze and attempt to forge signatures for other mes-
sages, with the ultimate goal of generating a valid signa-
ture for a message that the adversary has not previously 
requested.

In addition to the above powers inherited from adver-
saries’ against a basic signature scheme, we further 
assume that the adversary in the revocable signature 
scheme is able to leak the private key. However, in this 
case the goal of adversary is to forge a valid signature 
which can pass both the verify (i.e., 1 is output) and the 
revoke algorithm (i.e., 0 is output).

Fig. 2  General workflow of revocable signature of an epoch, which shows the algorithms of generating keys, signing messages, verifying 
signatures, and revoking them if necessary, focusing on how digital signatures ensure the authenticity and integrity of the message. An epoch starts 
with the KeyGen algorithm and ends with the Revoke algorithm
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Security model
Based on the above threat model and the EU-CMA secu-
rity model of ECDSA, we present the security model of 
revocable signature, denoted as EU-CM&PLA.

We first describe the security model of EU-CM&PLA, 
where security is defined by a game between a challenger 
and an adversary. This model formalizes the adversary’s 
ability to make signature queries on adaptively chosen 
messages, as seen in the security model for an ECDSA 
scheme. It additionally formulates the adversary’s power 
of leaking private keys by allowing the adversary to per-
form one private key leakage query in an epoch. The EU-
CM&PLA security game is defined as follows:

Setup. The challenger runs KeyGen to gener-
ate public and private key pairs ((pk1, sk1), ..., (pkn, skn
)), and Auxiliary Embedded Key pairs 
((AEK1,AEK -com1), ..., (AEKn,AEK -comn )) using the 
key generation algorithm and shares {pk1, ..., pkn} and 
{AEK -com1, ...,AEK -comn} with the adversary, while 
keeping {sk1, ..., skn} and {AEK1, ...,AEKn} confidential to 
respond to the adversary’s signature queries.

Query. In each epoch e ∈ [n] , the adversary can make 
several signature queries on messages of its own choosing 
and one private key leakage query. For a signature query 
on message mi , the challenger computes the correspond-
ing signature σmi through running Sign and provides 
this signature to the adversary. For a private key leakage 
query in epoch [1, n− 1] , the challenger sends sk to the 
adversary. In total, the adversary can query n epochs.

Forgery. The adversary submits a valid but unauthor-
ized signature σm∗ on some message m∗ and wins the 
game if:

•	 σm∗ is a valid signature of message m∗.
•	 No signature on m∗ was previously requested during 

the query phase.

Definition 5  (EU-CM&PLA) A signature scheme is 
( t, qs, n, ql , ε)-secure in the EU-CM&PLA security model 
if no adversary can win the game described above within 
time t, making qs ∗ n signature queries for all epochs 
involved, ql private key leakage queries across n epochs 
(one private key leakage query per epoch) and with 
advantage ε.

Discussions
The discussions includes the discussion of assumption 
used in the threat model and security model and the dis-
cussion of attackers’ motivation.

Discussion of model assumption
A crucial assumption in our threat model is that the 
private key ske and the Auxiliary Embedded Key AEKe 
are not compromised simultaneously. Our security 
definition of EU-CM&PLA models the leakage of ske 
but assumes AEKe remains secret. If an attacker were 
to compromise both ske and AEKe , they would be 
indistinguishable from the legitimate owner and could 
generate valid and authorized signatures that can pass 
the Verify algorithm and cannot pass the Revoke 
algorithm. Our scheme relies on mitigating this risk 
through practical implementation, as discussed in Sec-
tion  Implementation considerations. We explicitly 
recommend storing AEK in a separate and secure man-
ner from sk (e.g., in isolated offline storage like a USB 
device or NFC card), making a simultaneous compro-
mise highly unlikely.

Discussion of attackers’ motivation
One may doubt the motivation of attackers, given that 
they are aware that valid but unauthorized signature 
which does not embed the AEK could be revoked later. 
However, the attacks of generating unauthorized NFTs 
still make sense in our scenario.

Exploiting the latency for irreversible gains. The 
main motivation of the attacker is financial gain, made 
possible by the delay between a successful transac-
tion and any revocation. Since blockchain guarantees 
immutability, once a transaction is confirmed, it can-
not be reversed. An attacker can exploit this property 
(Kshetri 2022). The marketplace’s smart contract, act-
ing as a decentralized escrow, checks the signature σm∗ 
using the public key pk. If the signature is valid, it com-
pletes the trade and records the result on-chain. By the 
time the true owner notices the unauthorized sale and 
triggers the Revoke to reveal AEKe and revoke σm∗ , the 
NFT has already been transferred. Due to blockchain 
immutability, this loss is permanent. The revocation 
only acts as a public notice of forgery, offering no way 
to recover the asset. This highlights that even a short 
delay can allow an attacker to extract the full economic 
value.

Inflicting irreparable reputation harm. Even after 
the true owner revokes the valid but unauthorized NFT, 
the NFT itself, along with its transaction history, remains 
a permanent artifact on the blockchain. The revocation 
proves the NFT is unauthorized, but it cannot erase the 
public record or the memory of the event. This incident 
can permanently tarnish the artist’s brand equity by cre-
ating doubt among collectors about the authenticity and 
governance of their collection. This is exemplified by the 
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cases of Davidson (2022) and Quarmby (2021) involved 
in our introduction.

Degradation of system availability. During the execu-
tion of the Revoke algorithm, AEKe needs to be reveled 
publicly. Then ( ske, pke ) and ( AEKe,AEK -come ) need 
to be updated. By repeatedly introducing forgeries, the 
attacker can compel the project to execute this process 
continuously. It degrades system availability, imposes sig-
nificant operational overhead on the administrators, and 
erodes the marketplace’s stability. The attacker effectively 
turns the system’s own security feature into a vector for a 
resource-exhaustion attack (Luu et al. 2016).

Overall, private key-leakage attackers still have their 
motivation to issue valid but unauthorized NFTs for 
financial or other purposes. The proposed revocable sig-
nature cannot address all consequences caused by private 
key leakage, but provides effective measures to recouping 
losses to some extent and preventing the valid but unau-
thorized NFT from flooding the market.

Instantiation of revocable signature
This section presents a concrete revocable signa-
ture scheme based on the basic ECDSA, denoted as 
R-ECDSA = ( KeyGen, Sign, Verify, Revoke ). 
We first present the detailed procedure for each algo-
rithm of an epoch and then prove the correctness of 
R-ECDSA according to Definition 4. Then we prove the 
EU-CM&PLA security of R-ECDSA scheme according 
to Definition 5. Finally, we evaluate the performance of 
R-ECDSA in terms of computation overhead and storage 
overhead.

R‑ECDSA construction
R-ECDSA consists of four algorithms: the key generation 
algorithm KeyGen , the signing algorithm Sign , the veri-
fication algorithm Verify and the revocation algorithm 
Revoke , which are described as follows:

•	 KeyGen : This algorithm generates a standard 
ECDSA key pair ( ske, pke ) and, in parallel, a secret 
AEKe and its public commitment AEK -come , which 
is simply its hash.

•	 Sign : Instead of using a random number directly, 
this algorithm derives a nonce c by hashing a times-
tamp ts and combining it with the secret AEKe . This 
c is then used to compute the rest of the signature 
(r, s), and the final output is σe = (r, s, ts).

•	 Verify : This algorithm is identical to standard 
ECDSA verification.

•	 Revoke : This algorithm takes the secret AEKe 
and the signature σe as input. It recomputes the 
expected c′ and r′ . If the recomputed r′ matches 
the signature’s r, it means the AEKe was included, 

so the signature is authorized. If they do not match, 
the signature is unauthorized. An attacker with 
only ske cannot produce a signature (r,  s,  ts) that 
passes this check.

Fig.  3 presents the detailed procedure of R-ECDSA in 
an epoch. After completing the revocation of the valid 
but unauthorized signatures, an epoch is ended. The 
key generation algorithm KeyGen will be invoked to 
initiate a new epoch.

We prove the correctness of R-ECDSA according to 
Definition 4.

Proof

For any (ske, pke,AEKe,AEK -come) ← KeyGen(�, n ), and 
σe = (r, s, ts∗) ← Sign(ske,AEKe,m),

we can compute

The verification point P is calculated as:

So (c · G)x is identical to r.

Furthermore, we can compute

So r′ is identical to r.

Therefore,

z = H(m),

w = s−1 mod q =
c

z + r · ske
mod q,

u1 = zw mod q =
zc

z + r · ske
mod q,

u2 = rw mod q =
rc

z + r · ske
mod q.

P = u1 · G + u2 · pke

=
z · c · G

z + r · ske
+

r · c · pke

z + r · ske

=
z · c · G

z + r · ske
+

r · c · ske · G

z + r · ske

=
c · G(z + r · ske)

z + r · ske

= c · G

AEK − com′
e = H(AEKe),

c′ = (ts∗ + AEKe) mod q,

r′ = (c′ · G)x.



Page 10 of 19Xia et al. Cybersecurity            (2026) 9:97 

which indicates the correctness of verification algorithm 
and revocation algorithm. Therefore, we can prove the 
correctness of the R-ECDSA. 	�  �

Security proof of R‑ECDSA
We prove the EU-CM&PLA security of R-ECDSA 
scheme based on ECDSA’s EU-CMA security. Spe-
cifically, we first claim the R-ECDSA’s EU-CM&PLA 
security in Theorem 1. Then we prove the theorem by 
reducing the security of R-ECDSA scheme to the secu-
rity of the basic ECDSA scheme.

Theorem 1

R-ECDSA is ( t, qs, n, ql , ε)-secure in the EU-CM&PLA 
model given that the ECDSA scheme is EU-CMA secure. 
Specifically, if there exists a PPT adversary A winning the 
EU-CM&PLA game with an advantage of ε , then there 

1 ← Verify(pke,m, σe),

0 ← Revoke(σe,AEKe,AEK -come)

exists a PPT adversary B winning the EU-CMA game 
with an advantage of no less than ε.

Proof
Let A be a PPT adversary against R-ECDSA. A plays the 
EU-CM&PLA game with a challenger B who is also a PPT 
adversary against the ECDSA signature scheme. Thus, B 
plays an EU-CMA game with an ECDSA challenger C . 
The interactions among the three entities are also illus-
trated in Fig. 4.

In the EU-CM&PLA game, A makes queries and 
B responses. To embed the EU-CMA game into the 

Fig. 3  Revocable signature from the ECDSA

Fig. 4  Security proof method



Page 11 of 19Xia et al. Cybersecurity            (2026) 9:97 	

EU-CM&PLA game, B forwards every signature 
query from A to C and then forwards the correspond-
ing response from C to A . Specifically, the interactions 
among A , B and C in the EU-CM&PLA game which 
embeds the EU-CMA game are explained as follows.

•	 Setup: C initializes the system parameters and gen-
erates a public and private key pair (pk,  sk), pk is 
given to B and sk is kept secretly by C . Then, B ini-
tializes the system parameters and generates pub-
lic and private key pairs ((pk1, sk1), ..., (pkn−1, skn−1

)), and Auxiliary Embedded Key pairs 
( ( AEK1,AEK -com1), ..., (AEKn,AEK -comn ) ) . 
Moreover, B lets pkn = pk , {pk1, pk2, ..., pkn} and 
{AEK -com1,AEK -com2, ...,AEK -comn} are given to 
A , and {sk1, sk2, ..., skn−1} and {AEK1,AEK2, ...,AEKn} 
are kept secretly by B.

•	 Query: A can make signature queries to B at any 
epoch e ∈ [1, n] , and private key leakage queries to B 
in epoch e ∈ [1, n− 1] . B responses to the queries as 
follows:

–	 Signature queries: A submits a message m and que-
ries B the signature on m. For epoch e ∈ [1, n− 1] , 
B runs Sign(sk ,AEK ,m) to compute the signature 
σ on m and responses σ to A . For epoch n, B sub-
mits m to C and queries the signature. C uses sk to 
compute the signature σ on m and responses σ to 
B . B forwards σ to A.

–	 Private key leakage queries: A submits a private key 
query to B . B responses ske to A.

•	 Forgery: After qs signature queries, and ql < t pri-
vate key leakage queries, A returns to B a valid signa-
ture σ ∗ on a message m∗ that has not been queried in 
the query phase. B returns ( σ ∗,m∗ ) to C.

A wins the EU-CM&PLA game if σ ∗ is a valid signature 
for m∗ . In this case, B wins the EU-CMA game. Therefore, 

the advantage of B winning the EU-CMA game is not less 
than the advantage of A winning the EU-CM&PLA game. 
Since the ECDSA scheme is EU-CMA secure provided 
that ECDLP is hard in G, which means the advantage of 
B winning the EU-CMA game is negligible. Therefore, ε 
is negligible and R-ECDSA is ( t, qs, n, ql , ε)-secure in the 
EU-CM&PLA security model, provided that ECDLP is 
hard in G and ql < t . Furthermore, we can draw the con-
clusion that R-ECDSA has EU-CM&PLA security. 	�  �

Performance of R‑ECDSA
We evaluate the performance of R-ECDSA and compare 
it with the basic ECDSA in terms of computation over-
head and storage overhead.

Computation overhead
We have realized a prototype for the scheme using 
Python programming language, and run it to test the 
average run time. The hardware and software environ-
ments are specified in Table 3.

In the process of implementation using Python, the 
hashlib module is employed for various secure hash-
ing and message digest algorithms, along with several 
other modules. The curves used in the experiment are 
the FIPS standard curve P-256, P-384 and P-521 (Chen 
et al. 2019). In the experiment on the most widely used 
P-256 curve, we run the prototype ten times. The aver-
age computation time is 0.0414  s. The computation 
time on common devices in the real world is rang-
ing from 0.0402  s to 0.0427  s, which is a very short 
time slot and is acceptable for time-sensitive scenar-
ios. Additionally, we count the runtime of R-ECDSA 
and the basic ECDSA scheme on the four algorithms 
( KeyGen, Sign, Verify, Revoke ). Fig.  5 illus-
trates the performance comparison. The results indicate 
that R-ECDSA is comparable with those in basic ECDSA 
in the common three phases on all tested curves. The 
runtime of Revoke algorithm ranges from 0.0303  s to 

Table 3  Execution environment

Item Implementation specification

Computing device MacBook pro with apple M2 pro chip, macOS 
Ventura operating system, a 16.00-GB Memory, 512.00-GB 
Storage

Compiler environment PyCharm

Elliptic curve FIPS standard curve P-256, P-384, and P-521

H() use SHA-2 series (SHA-256, SHA-384, and SHA-512) 
to generate binary data, convert the binary data 
to string, then convert the string to integer and modulo q
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0.1976s, which means the algorithm itself is lightweight 
in terms of computing burden.

Storage overhead
The storage overhead is evaluated in terms of both the 
size of the stored keys and the size of the compiled files.

Key size. Table  4 compares the key size of R-ECDSA 
and basic ECDSA based on three different curves. In 
R-ECDSA, the signer needs to store the private key sk 
and the Auxiliary Embedded Key AEK, the verifier needs 
to store the public key pk and the public commitment 
AEK -com . In basic ECDSA, signer needs to store the pri-
vate key sk and verifier needs to store the public key pk.

Therefore, for P-256, the storage overhead of R-ECDSA 
is calculated as (32 + 33) + (64 + 66) = 195 bytes. The 
storage overhead of basic ECDSA is calculated as 32 + 64 
= 96 bytes. Similarly, for P-384, R-ECDSA requires 276 
bytes compared to 144 bytes in basic ECDSA, and for 
P-521, the respective storage requirements are 363 bytes 

and 198 bytes. Despite the additional overhead intro-
duced by R-ECDSA, the storage increase remains moder-
ate, ranging from 195 bytes to 363 bytes. Given modern 
computational resources, this increase is relatively small 
and does not impose a significant storage burden.

Compiled file size. Moreover, we test the size of com-
piled file, .pyc file. The size of compiled file needs to be 
stored ranges from 4 KB to 5 KB, which has a compact 
storage footprint.

Use case
Application background
We consider an implementation within the Ethereum 
Virtual Machine (EVM) ecosystem. The EVM is a widely 
adopted decentralized computation environment that 
defines the runtime behavior of smart contracts. Numer-
ous marketplaces and applications such as Ethereum, 
Polygon and OpenSea adopt EVM-compatible architec-
tures. Among the most prominent standards built on 
EVM is ERC-721, a widely used interface for NFTs. ERC-
721 defines a standard API for smart contracts to manage 
ownership, transfer, and many other functions of NFTs.

However, ECDSA deployed in EVM is a little different 
from basic ECDSA. Specifically, basic ECDSA sign algo-
rithm outputs σ = (r, s) , while a recovery bit v is addition-
ally output in EVM. During the verification algorithm, 
basic ECDSA inputs σ = (r, s) and pk to check if the sig-
nature is valid; however, in EVM, the public key is first 

Fig. 5  Comparison of computation overhead between R-ECDSA and basic ECDSA on different elliptic curves (P-256, P-384 and P-521) 
for KeyGen, Sign, Verify , and Revoke algorithms

Table 4  Stored key size (in byte)

R-ECDSA Basic ECDSA

Signer Verifier Signer Verifier

P-256 65 130 32 64

P-384 92 184 48 96

P-521 121 242 66 132
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derived from (r,  s,  v) as pk = r−1(s · R− z · G) mod q , 
where r · G = {R,R′} and v is used to determine the cor-
rect point R from the two symmetry points on the curve. 
Finally, the intermediate value pk is used to derive the 
address of wallet which will be compared with the one 
published and recorded on the blockchain. This process 
is essentially a transformation of formulas in the verifi-
cation algorithm of basic ECDSA. Our implementation 
strictly follows the specification of EVM.

Assume that Alice is an artist in the NFT system. She 
generates a pair of public and private keys ( skc, pkc ), 
where skc will be stored in her wallet. The pkc is used to 
generate the address of wallet, which will be published 
and recorded on the blockchain. When she wants to cre-
ate NFTs, the skc is used to sign the request proving that 
Alice is the true creator of those NFTs. The smart con-
tract of NFT uses the pkc to verify the signature. If the 
signature is valid, the smart contract of NFT will mint 
NFTs. When Alice wants to list NFTs on the marketplace, 

she must sign the sale information using the skc . If a buyer 
Bob wants to purchase this NFT, the smart contract of 
marketplace uses the pkc to verify the legitimacy of the 
signature. If the signature is valid, the transaction will go 
ahead, and the ownership of the NFTs will be transferred 
from Alice to Bob, this operation is executed by the smart 
contract of NFT.

We consider the case where Alice’s skc is stolen by an 
attacker Mallory, which does happen in practice. In cur-
rent NFT marketplaces, Mallory can use skc to sign the 
request of minting NFTs and list them on the market-
place. Since Mallory is using Alice’s skc for signing, the 
signature verification will succeed, and the marketplace 
will consider it a valid transaction.

The proposed revocable signature can address the 
above problem. Fig.  6 shows the workflow of applying 
R-ECDSA into the system. In R-ECDSA, upon suspect-
ing the leakage of skc and finding valid but unauthor-
ized NFTs occurring in the market, Alice can initiate 
the Revoke algorithm in the system to mark valid but 

Fig. 6  Application of R-ECDSA in the NFT system

Table 5  Key functions

Function Input Output Description

ecrecover () σ address Recover an address from a signature

_safeMint () tokenId, metadata token Safely mint NFTs

approve () address, tokenId / Give permission to transfer NFTs 
to another account

ownerOf () tokenId address Verify the current owner of the NFTs

safeTransferFrom () addresses, tokenId / Safely transfer NFTs

_burn () tokenId / Destroy tokenId
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unauthorized NFTs. The following subsections will show 
how to deploy R-ECDSA in the NFT system and how the 
consequences of private key leakage is alleviated. Table 5 
shows the key functions and their input, output and 
description used in the application.

User registration
When users register or log in to the marketplace, they 
establish a secure communication channel by connecting 
their wallet. This allows the marketplace to send requests 
to the user’s wallet and query information such as the 
NFTs and transaction history through the wallet address, 
and display a personalized interface for the user.

Alice runs KeyGen algorithm to initialize system 
parameter: Input a security parameter into wallet to gen-
erate a key pair (public key pkc and private key skc ) and 
an Auxiliary Embedded Key pair ( AEKc , AEK -comc).

The skc is kept secret in the wallet, and the AEKc can be 
stored in the meta-info of the wallet or a portable plug-and-
play offline storage (USB, NFC cards, etc.), assuming they are 
not leaked simultaneously. The pkc is used to generate the 
address of the wallet, which will be published on the chain. 
The AEK -comc will be deposited into a mapping on the 
chain during the process of minting NFTs.

Bob runs KeyGen algorithm to initialize system param-
eter and generate a key pair (public key pkb and private 
key skb ), where skb is kept secret in the wallet, and the 
wallet address corresponding to pkb will be published on 
the chain.

It is worth noting that the introduction of AEK does 
not interfere with the standard public key to address der-
ivation mechanism. Wallet addresses remain solely deter-
mined by pk, preserving full compatibility with existing 
blockchain infrastructures.

Mint, list and transfer
Main operations in NFT system include mint, list and 
transfer. After installing R-ECDSA in the blockchain, the 
following procedures can be executed.

•	 Mint: Alice runs Sign algorithm to generate the 
request of minting NFTs. The smart contract of NFT 
runs Verify algorithm to verify the request and 
then mints NFTs. 

1.	 Alice inputs skc , AEKc and request to generate a 
signature σmint.

2.	 The smart contract of the NFT uses ecrecover () to 
recover address from σmint and compares it with the 
address of Alice. The Verify algorithm returns “1", 
which means that σmint is a valid signature.

3.	 If σmint is valid, the smart contract of the NFT 
calls the function _safeMint () to mint the NFT 
and associate it with Alice’s address.

•	 List: Alice runs Sign algorithm and calls approve() to 
list NFTs on the marketplace. Alice inputs skc , AEKc 
and the sale information to generate a signature σlist , 
where the sale information includes the sale price of 
NFTs, the expiration time, the tokenId and tokenAd-
dress (the address of the smart contract of NFT). 
Then Alice calls approve () to give the smart contract 
of the marketplace permission to operate NFTs.

•	 Transfer: Bob sends the request of purchase, then the 
smart contract of marketplace runs Verify algo-
rithm to verify σlist . If valid, the smart contract of 
NFT transfer NFTs from Alice to Bob. 

1.	 Bob proposes the request of purchase, where the 
request includes the sale price of NFTs, the toke-
nId and the tokenAddress.

2.	 The mart contract of marketplace calls 
_ownerOf () to check current owner. In addition, 
the NFTs will be checked if it has expired.

3.	 Then the smart contract of marketplace uses 
ecrecover () to recover address from σlist and 
compares it with the address of Alice. The 
Verify algorithm returns “1", which means that 
σlist is a valid signature.

4.	 After the validation passes, the smart contract 
of NFT updates the owner of the NFTs to Bob’s 
address through the function safeTransferFrom ()

.

If Mallory obtains Alice’s private key illegally, the above 
operation executed by Alice can easily be implemented 
by Mallory. Specifically, Mallory can use skc to sign the 
request of minting valid but unauthorized NFTs and 
make them successfully uploaded to the marketplace. 
Then, the valid but unauthorized NFTs can be traded 
normally. Mallory also can construct a fake transaction 
to transfer Alice’s NFTs to an address under his control. 
The NFT marketplace will use Alice’s pkc to verify the 
validity of the digital signature. If the signature verifica-
tion passes, the node will assume that the transaction was 
authorized by Alice. Since Mallory is using Alice’s skc for 
signing, the signature verification will succeed, and the 
marketplace will consider it a valid transaction.

Revoke
If Alice discovers the valid but unauthorized NFTs in the 
marketplace, then she triggers a revocation operation. 
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The smart contract runs Revoke algorithm to deal with 
the valid but unauthorized NFTs. 

1.	 Alice extracts AEKc from her wallet, inputs AEKc 
into the smart contract of NFT and proposes a revo-
cation request.

2.	 The smart contract of NFT calculates if 
AEK -comc = hask(AEKc) to ensure that the request 
comes from Alice herself.

3.	 The smart contract of NFT runs the Revoke algo-
rithm. The output returns “1", which means that 
σmint and σlist are valid but unauthorized signatures. 
Then the smart contract of NFT executes the revoca-
tion operation and these corresponding NFTs will be 
marked as “burned" in the metadata of NFTs. These 
corresponding tokenId will be destroyed through 
_burn () and cannot perform any further transac-
tions.

Once a revocation process is completed, the system 
must ensure that the compromised key is no longer usa-
ble in any future operation. The marketplace will update 
the wallet address and unlink the old wallet address from 
the user’s account. To continue using the system, Alice 

needs to restart the process from user registration. How-
ever, the specific steps go beyond the scope of this paper 
and will therefore not be described in detail.

Discussion
This subsection introduces two different methods of rev-
ocation, the specific steps of _burn () and implementa-
tion considerations.

The method of revocation
Modification of existing smart contract. This approach 
involves introducing a mapping into the existing smart 
contract to track the revocation status of each NFT. 
Specifically, each tokenId is associated with a boolean 
flag indicating whether the token has been marked as 
revoked. Once an NFT is identified as unauthorized, the 
contract can prevent any further transfer operations by 
setting the corresponding revoked flag. This mechanism 
offers a lightweight and effective solution, enhances asset 
protection for legitimate owners, and fosters greater trust 
within the marketplace. However, it requires modifica-
tion of the contract and integration support from existing 
marketplaces. More critically, the revocation cannot ret-
roactively invalidate transactions that have already been 
finalized on-chain.

Algorithm 1  Revocation Mechanism in Modification of Existing Smart Contract

Table 6  Gas consumption for transaction operations (as of 
August 9, 2025)

Operation Transaction 
gas cost

Gas cost (in 
Gwei)

Gas cost (in 
Ether)

Gas cost 
(in USD)

Mint 125,512 51459.92 0.00005145992 0.21

Transfer 62,887 25783.67 0.00002578367 0.11

Revoke 87,566 35902.06 0.00003590206 0.15

Table 7  Comparison of gas cost between basic NFT transaction 
process and our scheme

Operation Transaction gas cost Gas cost (in USD)

Basic 
process

Our scheme Basic 
process

Our scheme

Mint 103,449 125,512 0.18 0.21

Transfer 72,318 62,887 0.12 0.11

Revoke / 87,566 / 0.15
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Deploying a specialized smart contract. This 
approach deploys a revocation registry contract on-chain 
to store the revocation status of multiple NFTs. This solu-
tion not only integrates seamlessly with the original NFT 
contracts but also allows third-party marketplaces (such 
as OpenSea) to leverage the registry. Any marketplace 
that supports Web3 can query this registry to verify the 
validity of an NFT, as the revocation records are main-
tained in a standalone contract, independent of the spe-
cific NFT contract implementation. However, the storage 
of revocation data in an external contract adds complex-
ity to the deployment. Additionally, each transfer opera-
tion requires interaction with the revocation registry 
contract, which could incur higher transaction costs.

Comparative analysis. We compare the above two 
methods across three dimensions:

•	 Security: The above methods present a trade-off 
between isolated risk and coupled risk. The spe-
cialized-contract method offers stronger isolation. 
Because the revocation logic resides in an independ-
ent contract, a compromise of a single NFT contract 
does not endanger the integrity of the ecosystem’s 
central registry. However, this architecture intro-
duces a new, centralized point of failure: the entire 
ecosystem’s revocation capability becomes depend-
ent on the security and governance of this single reg-
istry. Conversely, modified-contract method avoids 
this central dependency but couples the revocation 
logic with the token’s core management functions. 
This creates a larger, monolithic attack surface for the 
individual contract, where a single bug in either the 
NFT logic or the revocation routine could compro-
mise the entire asset.

•	 Performance: The modified-contract method is more 
lightweight and effective. Because the revocation sta-
tus is stored locally, verifying it requires only a sin-
gle operation. Conversely, the specialized-contract 
method architecture incurs significant gas cost, as 
this method is defined by its reliance on interaction 
with an external contract. Specifically, every transfer 
operation must interact with the separate revocation 
registry to verify an asset’s status. This mandatory, 
cross-contract interaction effectively imposes a per-
sistent gas overhead on all users, increasing transac-
tion costs.

•	 Ecosystem compatibility: The specialized-contract 
method offers better compatibility. Because the rev-
ocation contract functions as an external module, it 
can interoperate with multiple NFT standards and 
support existing collections without code modifica-
tion. This enables post-hoc integration of revocation 
capabilities into deployed ecosystems while preserv-

ing blockchain immutability and user trust. By con-
trast, the modified-contract method is suitable only 
for new NFT projects that can incorporate revoca-
tion logic during design time. It offers no practical 
upgrade path for legacy tokens due to the immuta-
bility of deployed smart contracts. Consequently, its 
applicability is limited in diverse NFT ecosystems.

The specific steps of _burn ()

In practical applications, _burn () achieves the goal of 
permanently invalidating the NFT logically and eco-
nomically by clearing all ownership records and issuing 
a standardized public event. The specific implementation 
steps are as follows: 

1.	 Use _ownerOf (tokenId) to confirm that the tokenId 
to be destroyed actually exists.

2.	 Find the current owner and decrease the owner’s 
holdings by 1 in the internal balance ledger.

3.	 Clear the mapping relationship between tokenId and 
its owner, and set the address to address(0).

4.	 Use emitTransfer () to publish an announcement: 
This NFT has been permanently burned. The trad-
ing marketplaces and various wallet applications will 
capture this event. When they see that the to address 
is address(0), they will remove this NFT from the 
front-end interface or mark it as “burned".

Implementation considerations
Applying R-ECDSA to the current NFT ecosystem can 
enhance its unauthorized signature revocation capa-
bilities. Signers can still prove that a signature was not 
generated by them even after their private key has been 
compromised, and the proof mechanism can be pub-
licly verified. However, to optimize the utilization of 
R-ECDSA, the following two considerations need be 
carefully implemented in practical.

First, AEK must be properly protected. AEK is key to 
R-ECDSA as AEK serves as the exclusive credential for 
triggering the revocation procedure. Possession of AEK 
is therefore restricted to the true owner of sk. Given its 
critical role, AEK must be stored separately from sk and 
in a secure manner. One option is to embed it within 
the wallet’s meta-info, which remains invisible to other 
blockchain participants. Alternatively, AEK can be kept 
in isolated offline storage, such as a hardware token, USB 
device, or NFC card, ensuring that the compromise of a 
single storage location does not simultaneously expose 
both AEK and sk. This separation of trust significantly 
reduces the risk of an attacker gaining full control over 
the revocation capability.
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Second, check the marketplace frequently to quickly 
identify NFTs under the user’s identity but not created by 
themselves. As one of the core characteristics of block-
chain is its immutability. Once a transaction is included 
in a block and confirmed by the network, it becomes an 
immutable historical record. This implies that once a 
transaction is recorded on the blockchain, it cannot be 
undone, and any subsequent attempts to alter the con-
firmed transaction state are futile. Therefore, user should 
check the marketplace frequently, or set up some auto-
matically notifying mechanism to send SMS/email when-
ever there are new NFTs listed in the marketplace under 
their identity.

Blockchain cost
To evaluate the performance and cost of R-ECDSA in a 
decentralized environment, we deploy our scheme in the 
Remix VM environment, including the complete work-
flow from minting a NFT token to revoking a valid but 
unauthorized NFT token. We test three times and record 
the average value. Gas consumption for each opera-
tion of a single NFT is summarized in Table  6, using 
the exchange rate 1 Ether = 4156.5 USD (as of August 
9, 2025) and a gas price of 0.41 Gwei. Gas prices fluctu-
ate based on network congestion. During periods of high 
congestion, gas prices tend to rise. To calculate the cur-
rent gas cost, we use the medium-priority gas price in 
Gwei (the smallest unit of Ether) as reported by Ether-
scan. We then convert the gas cost from Gwei to Ether, 

and finally, multiply the amount of Ether by the current 
ETH price to calculate the cost in USD.

The operation of mint requires 125,512 gas, which is 
approximately 0.21 USD. This is a relatively gas-inten-
sive operation, as minting NFTs usually involves more 
complex computational and storage operations, and 
therefore its cost is higher. The operation of transfer 
requires 62,887 gas, which is approximately 0.11 USD, 
and the operation of revoke requires 87,566 gas, which 
is approximately 0.15 USD. The operation of transfer 
has the lowest gas cost because it only involves updating 
the data and does not require complex computations or 
large-scale storage operations. The gas costs for revoke 
is intermediate, involving the mark and burn of valid but 
unauthorized NFTs. This operation is relatively less com-
plex. These gas costs indicate that our implementation 
achieves a practical balance between security enhance-
ment and economic efficiency in NFT system.

Table  7 illustrates the performance comparison 
between basic NFT transaction process and our scheme. 
Basic NFT transaction process only have the opera-
tions of mint and transfer, and the whole process doesn’t 
involve AEK. The results indicate that our scheme is com-
parable with those in basic NFT transaction process. The 
gas cost of revoke operation only needs 0.15 USD.

The above data is a cost analysis of operations per-
formed on one token. Figure 7 shows the comparison of 
the gas cost of each operation based on different num-
ber of tokens (from 1 to 100). Where x-axis represents 

Fig. 7  Comparison of the gas cost of each operation based on different number of tokens
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the number of tokens and y-axis represents the gas cost 
in USD. It is clear from the figure that gas costs increase 
linearly with the number of tokens.

Conclusion
In this paper, we addressed critical security challenges in 
the rapidly evolving NFT ecosystem and digital signature, 
with a particular focus on the risks associated with pri-
vate key leakage. Given the potential for private key com-
promises to lead to the creation of valid but unauthorized 
NFTs, which can be accepted in the market, we proposed 
a novel revocable signature scheme aimed at enhancing 
the security resilience of NFT systems.

To demonstrate the effectiveness of R-ECDSA, we 
introduced a general system overview for implementing 
the scheme and designed a concrete ECDSA-based con-
struction. The existential unforgeability of R-ECDSA 
is proved based on the assumption of ECDSA’s EU-
CMA. Additionally, we showed that the performance of 
R-ECDSA is comparable to traditional schemes, offer-
ing efficient performance without sacrificing security.

Beyond the technical details, R-ECDSA contributes 
to addressing the growing concerns around private key 
security in the context of NFTs, offering a practical and 
scalable solution for safeguarding digital assets. Moreo-
ver, R-ECDSA opens the door for future research into 
the broader application of revocable signatures in block-
chain-based systems.

While R-ECDSA can effectively alleviate the con-
sequences of private key leakage in NFT system, we 
acknowledge several limitations. First, the current design 
primarily operates before the phase of trading. Once an 
NFT transaction is finalized and revenue enters circula-
tion, revocation becomes challenging due to the irrevers-
ible nature of blockchain-based asset transfers. However, 
this limitation stems from broader economic and regula-
tory complexities rather than cryptographic weaknesses. 
Second, our current scheme requires the AEKe to be pub-
licly revealed to the smart contract during revocation. 
This forces the user to execute a full key rotation (for 
ske , pke , and AEKe ) after every incident, imposing opera-
tional overhead. Finally, our security model fundamen-
tally relies on the assumption that ske and AEKe are not 
compromised simultaneously.

Future research aims to bridge the gap and lay the 
foundation for a more secure and resilient NFT ecosys-
tem, where creators’ assets and identities are better pro-
tected against the growing threat of private key leakage. 
A primary goal is to eliminate the public revelation of 
AEKe . We plan to design a new mechanism using Zero-
Knowledge Proof (ZKP), which would allow an owner 
to prove an unauthorized signature without reveal-
ing the AEKe , thus removing the need for key rotation. 

Furthermore, future research will focus on extending 
R-ECDSA to address more complex and practical threat 
models. Specifically, we plan to investigate cross-con-
tract replay attacks, in which revoked signatures might 
be maliciously reused across interoperable NFT market-
places, and delayed revocation abuse, where attackers 
exploit the temporal gap between signature compromise 
detection and on-chain revocation execution. Further-
more, we aim to explore on-chain revocation oracles and 
incentive-compatible mechanisms that enable post-trade 
mitigation through collaboration between cryptographic 
design and blockchain governance. These directions are 
expected to bridge the gap between theoretical security 
guarantees and real-world operational resilience, paving 
the way toward a more comprehensive defense frame-
work for NFT ecosystems.
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