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Abstract

fee in Remix VM for revoking a signature.

Non-Fungible Token (NFT) creators use digital signatures to ensure the ownership, authenticity, integrity, and non-
repudiation of their digital works. However, if the private key is compromised, an attacker can generate unauthor-
ized NFTs by using the creator’s private key to issue valid signatures. These valid but unauthorized signatures will
be accepted in the NFT market and cannot be revoked. Even if the NFT creators update their private-public key
pairs, they cannot deny the NFTs generated by the attacker. To mitigate these risks, we propose revocable signature
by introducing commitment mechanism and an Auxiliary Embedded Key (AEK) into the signature, while the regu-
lar verification process does not involve this AEK. If a valid but unauthorized signature is detected and needs to be
revoked, AEK will be disclosed to perform the revocation operation. To illustrate the application of revocable sig-
natures in NFT, we design and implement a revocable Elliptic Curve Digital Signature Algorithm (ECDSA) scheme
with provable security. Experimental evaluations on the FIPS-recommended elliptic curves show that the perfor-
mance of revocable ECDSA is comparable to the basic ECDSA, with additional 0.0303 s (P-256 curve) and 0.15 USD gas
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Introduction

Motivation

The Non-Fungible Token (NFT) has emerged as a corner-
stone of digital ownership, enabling creators to authenti-
cate and trade unique digital assets through blockchain
technology (Hammi et al. 2023; Wang et al. 2021). It
relies on digital signature technology to ensure unique-
ness of ownership, authenticity, non-tamperability, and
verifiability of the creator’s identity. Thus, the private
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key of digital signature scheme plays an important role
in NFT application scenarios. As illustrated in Fig. 1, the
creator needs to use his private key to sign both minting
requests for new NFTs and transaction information for
listing them.

If the private key is compromised, an attacker can gen-
erate legitimate and irrevocable NFTs by generating valid
signatures on the minting requests using the private key.
Specifically, the attacker can send requests to the smart
contract. Then the smart contract mints NFTs, associates
them with attacker’s metadata, and registers these tokens
on-chain under the identity of the legitimate creator. Fur-
thermore, the attacker can authorize the list by signing
the transaction information using the leaked private key,
which will pass the verification on the blockchain. Since
NFTs are often traded on decentralized marketplaces and
immediately accessible to collectors or automated agents,
valid but unauthorized tokens may be sold before the
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Fig. 1 Digital signature in the NFT system. It is involved from Phase 1 when the creator mints an NFT to Phase 2 and 3 when the NFT is listed

in the marketplace and then purchased by a buyer

real creator becomes aware of the breach. The economic
value, reputation, and provenance guarantees associated
with NFTs are therefore critically undermined, and given
the immutable nature of blockchain records, dealing with
such an incident is extremely difficult without additional
cryptographic mechanisms.

For instance, in 2020, after the death of digital art-
ist Qing Han, fraudsters seized the opportunity to sell
her works of art as NFTs, the most popular sold for $69
million (Kwan 2020). In September 2022, the website
of renowned graffiti artist Banksy was hacked, leading
to a page promoting and selling his NFT works, which
resulted in a collector paying $336,000 for a valid but
unauthorized digital art (Davidson 2022). Tyler Hobbs,
the creator of the Art Blocks project “Fidenza’, publicly
criticized the SolBlocks platform for selling copies of his
work using his code (Quarmby 2021). Additionally, the
art of Derek Laufman was sold by a fraudulent account
impersonating his identity (Stephen 2021). Such scams
are numerous and widespread.

Although there exist two types of methods that spe-
cifically focus on the security of private keys, none of the
existing solutions can effectively address the revocation
of signatures issued by attackers with leaked private keys.
Traditional key rotation (Everspaugh et al. 2017; Vijaya-
kumar et al. 2011) limits the exposure window of private
keys by periodically updating them, however, it cannot
revoke signatures issued by attackers under leaked pri-
vate keys during the interval from the leaking to updat-
ing of private keys. Threshold cryptography (Desmedt
1994) reduces the risk of a single point of compromise

by splitting the private key into multiple segments and
dynamically updating the segments during key rotation.
However, if shares are eventually reconstructed (e.g.,
through collusion or attack persistence), the private key
will be leaked ultimately. Threshold schemes focus on
preventing compromise, not revoking its consequences.
In general, applying these schemes directly to digital
signatures only mitigates the future risk of private key
compromise but cannot solve the problem of misuse of
leaked private keys. In short, how to revoke signatures
issued by leaked private keys remains a significant and
unaddressed problem.

Our work
To address the problem, this paper proposes a new type
of signature scheme, named as revocable signature.
Generic construction of revocable signature. Com-
pared to existing methods that focus on preventing
future compromises but fail to address the legacy risks of
past key exposures, the revocable signature scheme ena-
bles signature revoking by integrating commitment and
revocation mechanisms in a digital signature scheme.
The basic signature scheme includes three algorithms:
key generation algorithm, signing algorithm, and verifica-
tion algorithm. Revocable signature introduces a revoke
algorithm into a basic signature scheme. During key
generation, an Auxiliary Embedded Key (AEK) is gen-
erated in addition to a pair of public and private keys.
Additionally, a public commitment of AEK is released
as AEK-com. The signing algorithm embeds AEK into
signatures such that valid but unauthorized signatures



Xia et al. Cybersecurity (2026) 9:97

(generated without AEK) can be distinguished from legal
ones and thereby revoked via the revoke algorithm. The
verification algorithm remains the same as in a basic sig-
nature scheme.

It is crucial to note that only the legitimate owner is
capable of running the revoke algorithm, since the revoke
algorithm requires the input AEK, which is never dis-
closed publicly. Since the private key-leakage attacker
does not have AEK, they can only issue signatures that
are checked to be valid via the verification algorithm but
detected as unauthorized through the revoke algorithm.
These signatures are thereby referred as “valid but unau-
thorized” signatures.

Even if an attacker is aware of the existence of AEK
and its role in the revocation mechanism, the incentive
to generate valid but unauthorized signatures remains
strong in many real-world settings. This is because such
signatures are immediately accepted as valid by stand-
ard verification algorithms and can be used to trigger
irreversible operations before revocation takes effect.
In time-sensitive or high-value contexts, such as the
NFT markets in this paper, the attacker may profit from
transient validity before revocation is executed, making
forgery attempts still attractive despite the risk of later
exposure and invalidation.

Instantiation of revocable signature. Following the
idea of revocable signature, this paper designs a concrete
Revocable Elliptic Curve Digital Signature Algorithm
(R-ECDSA) scheme from the basic ECDSA (Johnson
et al. 2001). The reason for choosing ECDSA is that it
has been widely adopted by mainstream blockchain sys-
tems, which serve as the underlying infrastructure for
NFT trading marketplaces (e.g., OpenSea). The proposed
R-ECDSA ensures that even if an attacker is able to steal
the private key and generate a valid but unauthorized sig-
nature that can be accepted in the NFT marketplaces, the
true owner of the private key can deny and revoke it. The
existential unforgeability of R-ECDSA is proved based
on the assumption of ECDSA’s existential unforgeability
against chosen-message attacks (EU-CMA). A prototype
of the scheme is realized on an ordinary laptop (Apple
M2 pro chip, 16.00-GB memory). The computational
overhead of R-ECDSA and basic ECDSA is compared on
the basis of three elliptic curves P-256, P-384 and P-521.

For the most widely used NIST P-256 elliptic curve,
the time of key generation algorithm is 0.0103 s of
R-ECDSA vs 0.0087 s of basic ECDSA. The time of
signing algorithm is 0.0073 s vs 0.0149 s, and the time
of verification algorithm is 0.0149 s vs 0.0147 s. The
results show that the efficiency of the three basic algo-
rithms in R-ECDSA is comparable to those in basic
ECDSA within the margin of error. The revocation
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algorithm takes only 0.0303 s, which is also acceptable
for real-world deployment. We also test the gas con-
sumption of the revocation algorithm as it will be per-
formed by smart contracts in real-world scenarios. The
result is 87,566 gas, that is 0.15 USD according to the
exchange rate of August 9, 2025.

In summary, our primary contributions are con-
cluded as following:

1. We formally define the revocable signature scheme,
whose core idea is to decouple cryptographic valid-
ity from true authorization, enabling the signer to
revoke valid but unauthorized signatures gener-
ated by a leaked private key. We further introduce a
new security model, existential unforgeability under
chosen-message and private-key leakage attacks (EU-
CM&PLA).

2. We design R-ECDSA, a practical instantiation of the
revocable signature built on ECDSA and fully com-
patible with existing verification logic for seamless
adoption.

3. We provide a formal security analysis of R-ECDSA
based on the standard EU-CMA security assumption
of ECDSA.

4. We implement a full prototype and demonstrate its
real-world feasibility. Our evaluation confirms that
R-ECDSA adds negligible computational overhead
and economically viable gas cost, making it a practi-
cal solution for securing NFT ecosystems.

Organization

The remainder of this paper is organized as follows.
Section Related works provides an overview of related
work. Section Preliminary presents the mathematical,
cryptographic and smart contract background. Sec-
tion Generic constructions presents the formal defini-
tions of revocable signature. Section Instantiation of
revocable signature presents the R-ECDSA scheme,
proves its security, and evaluates its performance,
respectively. Section Use case illustrates the applica-
tion of revocable signature in the NFT system. Finally,
Section Conclusion concludes the paper and proposes
future work.

Related works

This section reviews current revocation schemes in the
blockchain and existing revocation schemes in the field
of digital signature.
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Revocation in blockchain

Although immutability is a core feature of blockchain, it
presents certain challenges in practical applications, such
as the inability to revoke or update transactions that have
already been completed, even when errors are identified.
To address this problem, revocation in blockchain has
attracted attentions in this field. Several specific meth-
ods tailored to different revocation needs have been
proposed. Existing methods can be classified as arbitra-
tion-based revocation, rollback-based revocation and
escrow-based revocation. Below we review some repre-
sentative approaches and compare them in Table 1.

Arbitration-based revocation (Deuber et al. 2019; Ren
et al. 2022) is a mechanism to achieve authority/decision
revocation through a pre-determined arbitration agree-
ment, where the revocation is triggered by a multi-party
verification or authoritative ruling. For example, Lesaege
et al. (2019) is a decentralized application built on top of
Ethereum. It relies on game theoretic incentives to have
jurors rule cases correctly. However, its core mecha-
nism relies on a network of on-chain jurors rather than
creator-autonomous execution of operations, which fun-
damentally conflicts with the creator autonomy that the
NFT ecosystem values. More critically, the dispute reso-
lution protocol may result in high latency, which prove
fatal in the fast-paced NFT marketplace. An unauthor-
ized NFT could be minted, sold, and traded multiple
times before arbitration yields a verdict, by which point
the attacker will have already secured their profits and
exited. Finally, the “fairness”of arbitration requires addi-
tional mechanisms to ensure, making it vulnerable to
attacks or manipulation.

Rollback-based revocation (Liao et al. 2023; Peng and
Xu 2022) is the revocation of a recent operation or privi-
lege change after a security threat has been detected,
restoring the state of the system to a previous point in
time. For example, some customized NFT contracts
(Groschopf et al. 2021; Kubilay et al. 2019; Hu et al. 2020)
add control permissions on top of the basic standard to
support the rollback of erroneous transactions. However,

Table 1 Existing revocation solutions in blockchain
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this requires the revocation logic to be predefined in the
smart contract, which increases the complexity of the
operations. Additionally, rollback can mistakenly hurt
other legitimate transactions signed with the same pri-
vate key. For instance, if a creator legitimately mints 10
NFTs and an attacker fraudulently mints an 11th, a roll-
back would indiscriminately jeopardize all 11 NFTs,
thereby punishing innocent collectors who purchased
the legitimate assets. Furthermore, if the legitimate NFTs
have already been worked as collateral or used in games,
the rollback would trigger cascading failures.

Escrow-based revocation (Kumar and Tripathi 2019;
Rajalakshmi et al. 2018; Guo et al. 2023) is the revoca-
tion of a transaction if a disputed issue arises prior to
closing, which can be completed by the escrow provider.
In certain transactions, assets are held in an escrow
account until all parties confirm the transaction’s valid-
ity. If any anomalies are detected, particularly when dis-
putes, errors, or the need for intermediary intervention
arise, the escrow provider can stop or reverse the trans-
action. Escrow-based revocation is designed to mediate
the transaction phase (e.g., a buyer’s payment and seller’s
transfer). However, a core problem we address is fraudu-
lent minting, where an attacker uses a leaked private key
to call the mint function directly. This minting opera-
tion entirely bypasses any escrow. Consequently, escrow
schemes are completely ineffective in preventing the cre-
ation of a valid but unauthorized NFT. Additionally, The
revocation of a transaction in an escrow account typically
relies on pre-agreed conditions and the intervention of
intermediaries. As the process becomes more complex, it
can impact user experience.

In summary, arbitration-based revocation imposes
substantial governance overhead and latency in deci-
sion-making due to its reliance on third-party adjudica-
tion processes, contravening the foundational principle
of decentralized autonomy. Rollback-based revocation
forces a state reset that destroys the finality of the trans-
action and triggers an on-chain historical credibility
crisis. Escrow-based revocation relies on a third-party

Schemes Revocation method Limitations (or characteristics)
Arbitration-based revocation (Deuber et al. 2019; Ren et al. 2022; Multi-vote decision Slow processing, possible vote
Lesaege et al. 2019) manipulation

Rollback-based revocation (Liao et al. 2023; Peng and Xu 2022; Gro- Contract logic decision May affect normal trading

schopf et al. 2021; Kubilay et al. 2019; Hu et al. 2020)

Escrow-based revocation (Kumar and Tripathi 2019; Rajalakshmi et al. Third-party intermediary decision Intermediaries may have security risks
2018; Guo et al. 2023)

Proposed scheme AEK decision No third-party dependency, condi-

tional revocation
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escrow agent, which carries the risk of a single point of
failure and requires preset conditions and intermedi-
ary interventions, which is not flexible enough. None of
these methods can revoke already-minted NFTs signed
under leaked private keys because the verification logic
on-chain cannot distinguish legitimate from unauthor-
ized signatures. Our solution of revocable signature elim-
inates unnecessary steps by enabling revocation through
verification of AEK when needed. It requires no addi-
tional entities, as the true owner of the private key can
independently perform the revocation operation.

Revocation in signature schemes

Revocation has been explored in digital signature
schemes such as time-deniable signature, ring signa-
ture, attribute-based signature, group signature and so
on. Among these schemes, some use the term “denial’,
while others adopt “revocation”. To maintain consistency,
we unify this concept as “revocation”in our paper, where
both terms convey the same semantic meaning in our
context. While at the first glance revocation (or denial) in
these signature schemes is close to the revocation in our
work, the problems they address are totally different.

“Denial" in time-deniable signatures (TDS) (Beck et al.
2023) is used to refer to denying the creation of older
signature content. It restricts signature authenticity to a
specific time period. Beyond this period, signatures that
do not provide strong authentication become easier to
forge, enabling the signer to plausibly deny their creation.
While TDS is effective in applications like Domain Keys
Identified Mail (DKIM)-signed emails, it cannot revoke
valid but unauthorized signatures caused by the leakage
of private keys within any period.

The term “denial’and “revocation’are also used in
some ring signature, attribute-based signature and cer-
tificateless signature schemes. However, “denial”’and
“revocation”in these works are not about the revocation
of signature. In traditional ring signature schemes, the
complete anonymity of signers may potentially allow
malicious signers to shift blame onto other group mem-
bers. To address this issue, Komano et al. (2006) and Gao
et al. (2019) propose deniable ring signature schemes
(DRS), which is designed to enable signers to dem-
onstrate their non-involvement in generating specific
signatures through zero-knowledge proofs. This mecha-
nism allows legitimate members to proactively deny
illegitimate signatures via interactive verification pro-
tocols, thereby ensuring that innocent participants can
effectively exonerate themselves from false accusations
while preserving the fundamental properties of signer
anonymity. The schemes of Liu et al. (2007) and Bresson
and Stern (2001) grant a designated set of authorities the
ability to revoke the signer’s anonymity. Authorities can
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reveal the true identity of the signer when necessary, pre-
vent abuse of anonymity, and enforce accountability for
malicious behavior. Escala et al. (2011) also to prevent
anonymous abuse, propose a revocable attribute-based
signature based on commitment program and zero-
knowledge proofs. Sun et al. (2013) try to address mem-
bership revocation by improving the composition of the
signer’s private key thus better managing signers.

In summary, while it seems that the terms of
“denial’and “revocation”in these schemes are close to the
revocation of signatures in this paper, they deal with dif-
ferent research questions. Existing deniable and revoca-
ble signature schemes provide no solution to address the
problem of revoking valid but unauthorized signatures
caused by private key leakage.

Preliminary

This section reviews the cryptographic and mathematical
foundations of revocable signature, then introduces the
smart contract. Symbols used in this paper are explained
in Table 2.

Elliptic Curve Cryptography (ECC)

Let F, be a finite field of p elements, where p is a prime.
An elliptic curve E that is suitable for cryptography is
defined by the equation in the variables x and y of the
form:

Y =x>+ax+b modp (1)

where a,b € Fp,émg +27b*> #0 mod p. For detailed
information about elliptic curves, we refer the reader to
Silverman’s book (Silverman 1986).

An elliptic curve group G is defined by all points on
the elliptic curve plus a point O at infinity and addition
operation + among these points. The exponentiation in
G is defined as

Table 2 Notations

Symbol Description

Fp A finite field with prime p

E An elliptic curve over a prime field £,

G An elliptic curve group

G A base point on elliptic curve group G

q The order of G

Z The set of integers {1,..,qg — 1}

<« Sampling an instance from a distribution
€ Halt
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n-Q=Q+---+Q
———

n

for any point Q € G and a positive integer #, which is also
known as scalar multiplication.

The security of ECC is based on the difficulty of Elliptic
Curve Discrete Logarithm Problem (ECDLP).

Definition 1 (ECDLP) Given a point M € G of order ¢,
and a point N = [ - M where [ € Z;, determine /.

Digital signature

Formal definitions

A digital signature scheme is defined by a tuple of proba-
bilistic polynomial time (PPT) algorithms (Gen, Sign, Ver-
ify) such that:

o (pk,sk) < Gen(1%): Given a security parameter 4,
the Gen algorithm outputs a public-private key pair.

+ o < Sign(m,sk): Given a private key sk and a mes-
sage m, the Sign algorithm outputs the signature o.

e b e{0,1} « Verify(m,o,pk): Given a message m,
signature o, and public key pk, the Verify algorithm
outputs 1 indicating that the signature is valid or 0
otherwise.

The correctness of a digital signature scheme is defined
as follows.

Definition 2 (Correctness of Digital Signature) For
any pair of (pk,sk) < Gen(1%), if o « Sign(m, sk), then
1 <« Verify(m, o, pk).

Security of digital signature
EU-CMA is a widely used security model for digital
signature schemes. It is defined through the EU-CMA
security game, where an adversary A interacts with a
challenger C and tries to break the signature scheme. The
game proceeds as follows:

Setup. Let / be the system parameters. C runs the key
generation algorithm to generate a key pair (pk, sk) and
sends pk to A. C keeps sk to respond to signature queries
from A.

Query. A makes signature queries on messages that are
adaptively chosen by A itself. For a signature query on
the message m;, C runs the sign algorithm to compute o;
and then sends it to A.

Forgery. A returns a valid but unauthorized signa-
ture o* on some m* and wins the game if o* is a valid
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signature and a signature of m* has not been queried in
the query phase.

The advantage ¢ of .4 winning the game is the probabil-
ity of returning a valid signature.

Definition 3 (EU-CMA) A signature scheme is (,gs, €
)-secure in the EU-CMA security model if there exists
no adversary who can win the above game in time ¢ with
advantage ¢ after it has made g, signature queries.

ECDSA

The widely adopted ECDSA signature scheme is param-
eterized by an elliptic curve group G generated by a base
point G. The algorithm makes use of a hash function
H:{0,1}* —» Z;. The three algorithms of ECDSA are
explained as follows:

+ Key generation algorithm:

1. Select a random integer d € Z7 as the private key,
where ¢ is the order of the elliptic curve group.
2. Compute 1 = d - G as the public key.

+ Signing algorithm:

1. Select a random integer k € Z;.

2. Compute k - G = (x1,¥1)-

3. Computer =x; mod g. If r = 0 then go to step
1.

4. Compute s =k~ 1(H(m) +dr) modgq. If s=0
then go to step 1.

5. Output the signature (7, s).

+ Verification algorithm:

1. Verify that r and s are integers in the interval
[1,g —1].

2. Compute H(m).

Computew = s~ mod gq.

4. Compute u; = Him)w mod ¢q
uy =rw mod q.

5. Computeu; - G +uy - h = (x7,5)).

Compute ' = x] mod g.

7. Accept the signature if and only if ¥’ = r.

1

w

and

S

The EU-CMA security of ECDSA has been proved in
Brown (2005). We will use it as an assumption in the
security proof of R-ECDSA.
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Smart contract

The functionalities of an NFT are based on the underly-
ing smart contracts. The smart contract encodes the rules
and guidelines that define the token and its specific prop-
erties. When specific criteria are satisfied, a smart con-
tract will automatically run and carry out its intended
function. Digital contracts regulate token ownership and
exchanges in NFTs.

Generic constructions

This section presents system overview, threat model and
security model of revocable signature. Then we discuss
the motivations of the adversary.

System overview

A revocable signature scheme is  defined
by a tuple of  four PPT algorithms
(KeyGen, Sign, Verify, Revoke). An epoch ein

our paper is formally defined as a discrete temporal inter-
val bounded by an execution of KeyGen and Revoke.
Four algorithms are described as follows:

o (ske, pke, AEK,, AEK -com,) < KeyGen(/, n): On
input security parameter A and the maximum num-
ber of epochs n € O(24), the generation algorithm
outputs a secret and public key pair (ske, pk.), and an
Auxiliary Embedded Key pair (AEK,, AEK -com,) in
epoche € [n].

o 0, < Sign(sk., AEK,, m): On input private key sk,
and Auxiliary Embedded Key AEK, for epoch e € [n]
and a message m € M, the signing algorithm outputs
a signature o,.

o be{0,1} « vVerify(pke, m,o.): On input public
key pk., a message m, and a signature o, for epoch
e € [n], the verification algorithm outputs 1 indicat-
ing that the signature is valid or 0 otherwise.

+ b €{0,1} < Revoke(o,, AEK,, AEK-com,): On
input a signature o, and Auxiliary Embedded Key
pair (AEK,, AEK -com,) for epoch e € [n], the revo-
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cation algorithm outputs 1 indicating that the signa-
ture is unauthorized (need to revoke) or 0 otherwise.

The four algorithms are also illustrated in Fig. 2. The
correctness of revocable signature is defined as follows:

Definition 4 (Correctness of revocable signature)
For any pair of (ske,pke, AEK,, AEK-com,) < KeyGen
(A4, n), if o, < Sign(sk., AEK,, m), then 1 < Verify
(pke, m, 0.) and 0 <— Revoke(o,, AEK,, AEK -com,).

Security definition
Security definition includes the definition of threat
model and security model.

Threat model
We assume the following powers of adversary against a
revocable signature scheme.

First, the adversary is able to request the signer to
sign certain messages and obtain the corresponding
signature pairs (messages and their corresponding sig-
natures). This allows the adversary to accumulate infor-
mation about the signer and the signing process. The
adversary can then use the obtained signature pairs to
analyze and attempt to forge signatures for other mes-
sages, with the ultimate goal of generating a valid signa-
ture for a message that the adversary has not previously
requested.

In addition to the above powers inherited from adver-
saries’ against a basic signature scheme, we further
assume that the adversary in the revocable signature
scheme is able to leak the private key. However, in this
case the goal of adversary is to forge a valid signature
which can pass both the verify (i.e., 1 is output) and the
revoke algorithm (i.e., 0 is output).

=)
=)

ginpm I:‘algorithm

Fig. 2 General workflow of revocable signature of an epoch, which shows the algorithms of generating keys, signing messages, verifying
signatures, and revoking them if necessary, focusing on how digital signatures ensure the authenticity and integrity of the message. An epoch starts
with the KeyGen algorithm and ends with the Revoke algorithm

Oompu! <> decision
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Security model

Based on the above threat model and the EU-CMA secu-
rity model of ECDSA, we present the security model of
revocable signature, denoted as EU-CM&PLA.

We first describe the security model of EU-CM&PLA,
where security is defined by a game between a challenger
and an adversary. This model formalizes the adversary’s
ability to make signature queries on adaptively chosen
messages, as seen in the security model for an ECDSA
scheme. It additionally formulates the adversary’s power
of leaking private keys by allowing the adversary to per-
form one private key leakage query in an epoch. The EU-
CM&PLA security game is defined as follows:

Setup. The challenger runs KeyGen to gener-
ate public and private key pairs ((pki,ski), .... (pkn, sk,
) and  Auxiliary =~ Embedded Key  pairs
((AEKy, AEK -comy), ..., (AEK,,, AEK -com,)) using the
key generation algorithm and shares {pki,..,pk,} and
{AEK -comy, ..., AEK -com,} with the adversary, while
keeping {ski, ..., sk,} and {AEKj, ..., AEK,} confidential to
respond to the adversary’s signature queries.

Query. In each epoch e € [#n], the adversary can make
several signature queries on messages of its own choosing
and one private key leakage query. For a signature query
on message m;, the challenger computes the correspond-
ing signature o, through running Sign and provides
this signature to the adversary. For a private key leakage
query in epoch [1,n — 1], the challenger sends sk to the
adversary. In total, the adversary can query # epochs.

Forgery. The adversary submits a valid but unauthor-
ized signature o, on some message m* and wins the
game if:

+ oy is a valid signature of message m*.
+ No signature on m™* was previously requested during
the query phase.

Definition 5 (EU-CM&PLA) A signature scheme is
(t,qs,n, q;, €)-secure in the EU-CM&PLA security model
if no adversary can win the game described above within
time ¢, making g * n signature queries for all epochs
involved, g; private key leakage queries across n epochs
(one private key leakage query per epoch) and with
advantage ¢.

Discussions

The discussions includes the discussion of assumption
used in the threat model and security model and the dis-
cussion of attackers’ motivation.
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Discussion of model assumption

A crucial assumption in our threat model is that the
private key sk, and the Auxiliary Embedded Key AEK,
are not compromised simultaneously. Our security
definition of EU-CM&PLA models the leakage of sk,
but assumes AEK, remains secret. If an attacker were
to compromise both sk, and AEK,, they would be
indistinguishable from the legitimate owner and could
generate valid and authorized signatures that can pass
the Verify algorithm and cannot pass the Revoke
algorithm. Our scheme relies on mitigating this risk
through practical implementation, as discussed in Sec-
tion Implementation considerations. We explicitly
recommend storing AEK in a separate and secure man-
ner from sk (e.g., in isolated offline storage like a USB
device or NFC card), making a simultaneous compro-
mise highly unlikely.

Discussion of attackers’ motivation
One may doubt the motivation of attackers, given that
they are aware that valid but unauthorized signature
which does not embed the AEK could be revoked later.
However, the attacks of generating unauthorized NFTs
still make sense in our scenario.

Exploiting the latency for irreversible gains. The
main motivation of the attacker is financial gain, made
possible by the delay between a successful transac-
tion and any revocation. Since blockchain guarantees
immutability, once a transaction is confirmed, it can-
not be reversed. An attacker can exploit this property
(Kshetri 2022). The marketplace’s smart contract, act-
ing as a decentralized escrow, checks the signature o,
using the public key pk. If the signature is valid, it com-
pletes the trade and records the result on-chain. By the
time the true owner notices the unauthorized sale and
triggers the Revoke to reveal AEK, and revoke oy, the
NFT has already been transferred. Due to blockchain
immutability, this loss is permanent. The revocation
only acts as a public notice of forgery, offering no way
to recover the asset. This highlights that even a short
delay can allow an attacker to extract the full economic
value.

Inflicting irreparable reputation harm. Even after
the true owner revokes the valid but unauthorized NFT,
the NFT itself, along with its transaction history, remains
a permanent artifact on the blockchain. The revocation
proves the NFT is unauthorized, but it cannot erase the
public record or the memory of the event. This incident
can permanently tarnish the artist’s brand equity by cre-
ating doubt among collectors about the authenticity and
governance of their collection. This is exemplified by the
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cases of Davidson (2022) and Quarmby (2021) involved
in our introduction.

Degradation of system availability. During the execu-
tion of the Revoke algorithm, AEK, needs to be reveled
publicly. Then (sk.,pk,) and (AEK., AEK-com.) need
to be updated. By repeatedly introducing forgeries, the
attacker can compel the project to execute this process
continuously. It degrades system availability, imposes sig-
nificant operational overhead on the administrators, and
erodes the marketplace’s stability. The attacker effectively
turns the system’s own security feature into a vector for a
resource-exhaustion attack (Luu et al. 2016).

Overall, private key-leakage attackers still have their
motivation to issue valid but unauthorized NFTs for
financial or other purposes. The proposed revocable sig-
nature cannot address all consequences caused by private
key leakage, but provides effective measures to recouping
losses to some extent and preventing the valid but unau-
thorized NFT from flooding the market.

Instantiation of revocable signature

This section presents a concrete revocable signa-
ture scheme based on the basic ECDSA, denoted as
R-ECDSA = (KeyGen, Sign, Verify, Revoke).
We first present the detailed procedure for each algo-
rithm of an epoch and then prove the correctness of
R-ECDSA according to Definition 4. Then we prove the
EU-CM&PLA security of R-ECDSA scheme according
to Definition 5. Finally, we evaluate the performance of
R-ECDSA in terms of computation overhead and storage
overhead.

R-ECDSA construction

R-ECDSA consists of four algorithms: the key generation
algorithm KeyGen, the signing algorithm Sign, the veri-
fication algorithm Verify and the revocation algorithm
Revoke, which are described as follows:

+ KeyGen: This algorithm generates a standard
ECDSA key pair (ske, pk.) and, in parallel, a secret
AEK, and its public commitment AEK-com,, which
is simply its hash.

+ Sign: Instead of using a random number directly,
this algorithm derives a nonce ¢ by hashing a times-
tamp ts and combining it with the secret AEK,. This
¢ is then used to compute the rest of the signature
(r, s), and the final output is o, = (7,5, ts).

+ Verify: This algorithm is identical to standard
ECDSA verification.

+ Revoke: This algorithm takes the secret AEK,
and the signature o, as input. It recomputes the
expected ¢ and r’. If the recomputed ' matches
the signature’s r, it means the AEK, was included,
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so the signature is authorized. If they do not match,
the signature is unauthorized. An attacker with
only sk, cannot produce a signature (r, s, ts) that
passes this check.

Fig. 3 presents the detailed procedure of R-ECDSA in
an epoch. After completing the revocation of the valid
but unauthorized signatures, an epoch is ended. The
key generation algorithm KeyGen will be invoked to
initiate a new epoch.

We prove the correctness of R-ECDSA according to
Definition 4.

Proof

For any (ske, pke, AEK,, AEK -com,) < KeyGen(4, n), and
0. = (r,8,ts*) < Sign(sk., AEK,, m),

we can compute

z = H(m),
-1 C

w==s mod = ———— mod )
1 z+r- sk, 1

d Zc d
up=zw mod g=——— mod g,
! 1 z+r-ske 1

d it d
Uy =rw mo = mo .
2 1 z+r-ske 1

The verification point P is calculated as:

P=u -G+ u - pk

_z-c-G r-c-pke

T z+r-sk, z+r-ske

_ z-¢c-@ r-c-sk.-G

T z4r-sk, z+r-ske

_ c-G(z+r-ske)
z+r-ske

=c-G

So (¢ - G), is identical to r.

Furthermore, we can compute

AEK — com; = H(AEK,),
¢ = (ts* + AEK,)
' =(c - G)y.

mod g,

So r’ is identical to r.

Therefore,
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® KeyGen 2. Verify that r and s are integers in
1. Choose sk, AEK, € Z; ; gfnllntuetrevazl, L I‘;Zml)]
2. Compute pk, = sk, - G, ’ P A

AEK-com. = H(AEK,)
3. return (ske, pke)
return (AEK,., AEK-com.)

® Sign

1. Compute z = H(m)

2. Compute ts* = H(ts)

3. Compute ¢ = (ts* + AEK,)
mod ¢q

4. Compute R=c¢-G

5. Compute r = R, mod ¢

6. Compute s = ¢ 1(z + r - ske)
mod ¢q

7. 0¢ < (1,8,t8)

8. return o,

® Verify

1. Parse o, = (1, s,158)

.~

mod q
Z'w mod ¢q and

Compute w = s~
Compute u; =
ug = rw mod ¢q
6. if (u1 - G + ug - pke), = r then
7. return 1

8. else return 0
® R

ot

evoke

1. Compute AEK-com!, =
H(AEK.)

2. if AEK-com] # AEK-come, it
outputs L

3. else parse o = (r, s,ts)

Compute ts* = H(ts)

Compute ¢ = (ts* + AEK.)
mod q

Compute ' = (¢ - G),,

if r # 1’ then

return 1

else return 0

A

© X >

Fig. 3 Revocable signature from the ECDSA

1 <« vVerify(pke, m, o),
0 < Revoke(oe, AEK,, AEK -com,)

which indicates the correctness of verification algorithm
and revocation algorithm. Therefore, we can prove the
correctness of the R-ECDSA. O

Security proof of R-ECDSA

We prove the EU-CM&PLA security of R-ECDSA
scheme based on ECDSA’s EU-CMA security. Spe-
cifically, we first claim the R-ECDSA’s EU-CM&PLA
security in Theorem 1. Then we prove the theorem by
reducing the security of R-ECDSA scheme to the secu-
rity of the basic ECDSA scheme.

Theorem 1

R-ECDSA is (t,qs,n,q,€)-secure in the EU-CME&EPLA
model given that the ECDSA scheme is EU-CMA secure.
Specifically, if there exists a PPT adversary A winning the
EU-CM&PLA game with an advantage of ¢, then there

exists a PPT adversary B winning the EU-CMA game
with an advantage of no less than e.

Proof

Let A be a PPT adversary against R-ECDSA. A plays the
EU-CM&PLA game with a challenger B who is also a PPT
adversary against the ECDSA signature scheme. Thus, B
plays an EU-CMA game with an ECDSA challenger C.
The interactions among the three entities are also illus-
trated in Fig. 4.

In the EU-CM&PLA game, A makes queries and
B responses. To embed the EU-CMA game into the

EU-CM&PLA game EU-CMA game

P query query P
/'.\ response response @'\

A (¢

Fig. 4 Security proof method
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EU-CM&PLA game, B forwards every signature
query from A to C and then forwards the correspond-
ing response from C to A. Specifically, the interactions
among A, B and C in the EU-CM&PLA game which
embeds the EU-CMA game are explained as follows.

« Setup: C initializes the system parameters and gen-
erates a public and private key pair (pk, sk), pk is
given to B and sk is kept secretly by C. Then, B ini-
tializes the system parameters and generates pub-
lic and private key pairs ((pki,ski), ..., (Pku—1, skn—1
), and Auxiliary Embedded Key pairs
( ( AEKy,AEK-comy), .., (AEK,,AEK-com, ) ) .
Moreover, B lets pk, = pk, {pki,pks,..,pk,} and
{AEK-com1, AEK -coms, ..., AEK -com,} are given to
A, and {sk1, sk, ..., sk,_1} and {AEKy, AEK>, ..., AEK},}
are kept secretly by B.

+ Query: A can make signature queries to B at any
epoch e € [1,n], and private key leakage queries to B
in epoch e € [1,n — 1]. B responses to the queries as
follows:

— Signature queries: A submits a message m and que-
ries 3 the signature on m. For epoch e € [1,n — 1],
B runs Sign(sk, AEK, m) to compute the signature
o on m and responses o to A. For epoch #, B sub-
mits 7 to C and queries the signature. C uses sk to
compute the signature o on m and responses o to
B. B forwards o to A.

— Private key leakage queries: A submits a private key
query to B. BB responses sk, to A.

+ Forgery: After g, signature queries, and g; < ¢ pri-
vate key leakage queries, A returns to B a valid signa-
ture o* on a message m* that has not been queried in
the query phase. B returns (o*, m*) to C.

A wins the EU-CM&PLA game if o* is a valid signature
for m*. In this case, B wins the EU-CMA game. Therefore,

Table 3 Execution environment
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the advantage of 3 winning the EU-CMA game is not less
than the advantage of A winning the EU-CM&PLA game.
Since the ECDSA scheme is EU-CMA secure provided
that ECDLP is hard in G, which means the advantage of
B winning the EU-CMA game is negligible. Therefore, ¢
is negligible and R-ECDSA is (t, g5, 1, q;, €)-secure in the
EU-CM&PLA security model, provided that ECDLP is
hard in G and ¢; < t. Furthermore, we can draw the con-
clusion that R-ECDSA has EU-CM&PLA security. O

Performance of R-ECDSA

We evaluate the performance of R-ECDSA and compare
it with the basic ECDSA in terms of computation over-
head and storage overhead.

Computation overhead

We have realized a prototype for the scheme using
Python programming language, and run it to test the
average run time. The hardware and software environ-
ments are specified in Table 3.

In the process of implementation using Python, the
hashlib module is employed for various secure hash-
ing and message digest algorithms, along with several
other modules. The curves used in the experiment are
the FIPS standard curve P-256, P-384 and P-521 (Chen
et al. 2019). In the experiment on the most widely used
P-256 curve, we run the prototype ten times. The aver-
age computation time is 0.0414 s. The computation
time on common devices in the real world is rang-
ing from 0.0402 s to 0.0427 s, which is a very short
time slot and is acceptable for time-sensitive scenar-
ios. Additionally, we count the runtime of R-ECDSA
and the basic ECDSA scheme on the four algorithms
(KeyGen, Sign, Verify, Revoke). Fig. 5 illus-
trates the performance comparison. The results indicate
that R-ECDSA is comparable with those in basic ECDSA
in the common three phases on all tested curves. The
runtime of Revoke algorithm ranges from 0.0303 s to

Item

Implementation specification

Computing device

Compiler environment
Elliptic curve
HO

MacBook pro with apple M2 pro chip, macOS

Ventura operating system, a 16.00-GB Memory, 512.00-GB
Storage

PyCharm

FIPS standard curve P-256, P-384, and P-521

use SHA-2 series (SHA-256, SHA-384, and SHA-512)

to generate binary data, convert the binary data
to string, then convert the string to integer and modulo g
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R-ECDSA - P-256 R-ECDSA - P-384 R-ECDSA - P-521
0.200 1 w7 ECDSA - P-256 77 ECDSA - P-384 /7 ECDSA - P-521
0.175 A
0.150 A
m
2
S 0.125
O
(]
2 ]
o 0-100 ,/
F 0.0751 2
0.050 A - /
| B 7
2035 . 7z 7
/ % 7
0.000 7 T f .
KeyGen Sign Verify Revoke
R-ECDSA ECDSA R-ECDSA ECDSA R-ECDSA ECDSA R-ECDSA ECDSA
P-256 0.0103 0.0087 0.0073 0.0072 0.0149 0.0147 0.0303 /
P-384 0.0247 0.0241 0.0241 0.0240 0.0489 0.0486 0.0984 /
P-521 0.0514 0.0497 0.0496 0.0494 0.0995 0.0994 0.1976 /

Fig. 5 Comparison of computation overhead between R-ECDSA and basic ECDSA on different elliptic curves (P-256, P-384 and P-521)

forkeyGen, Sign, Verify,andRevokealgorithms

Table 4 Stored key size (in byte)

R-ECDSA Basic ECDSA

Signer Verifier Signer Verifier
P-256 65 130 32 64
P-384 92 184 48 96
p-521 121 242 66 132

0.1976s, which means the algorithm itself is lightweight
in terms of computing burden.

Storage overhead
The storage overhead is evaluated in terms of both the
size of the stored keys and the size of the compiled files.
Key size. Table 4 compares the key size of R-ECDSA
and basic ECDSA based on three different curves. In
R-ECDSA, the signer needs to store the private key sk
and the Auxiliary Embedded Key AEK, the verifier needs
to store the public key pk and the public commitment
AEK -com. In basic ECDSA, signer needs to store the pri-
vate key sk and verifier needs to store the public key pk.
Therefore, for P-256, the storage overhead of R-ECDSA
is calculated as (32 + 33) + (64 + 66) = 195 bytes. The
storage overhead of basic ECDSA is calculated as 32 + 64
= 96 bytes. Similarly, for P-384, R-ECDSA requires 276
bytes compared to 144 bytes in basic ECDSA, and for
P-521, the respective storage requirements are 363 bytes

and 198 bytes. Despite the additional overhead intro-
duced by R-ECDSA, the storage increase remains moder-
ate, ranging from 195 bytes to 363 bytes. Given modern
computational resources, this increase is relatively small
and does not impose a significant storage burden.

Compiled file size. Moreover, we test the size of com-
piled file, .pyc file. The size of compiled file needs to be
stored ranges from 4 KB to 5 KB, which has a compact
storage footprint.

Use case
Application background
We consider an implementation within the Ethereum
Virtual Machine (EVM) ecosystem. The EVM is a widely
adopted decentralized computation environment that
defines the runtime behavior of smart contracts. Numer-
ous marketplaces and applications such as Ethereum,
Polygon and OpenSea adopt EVM-compatible architec-
tures. Among the most prominent standards built on
EVM is ERC-721, a widely used interface for NFTs. ERC-
721 defines a standard API for smart contracts to manage
ownership, transfer, and many other functions of NFTs.
However, ECDSA deployed in EVM is a little different
from basic ECDSA. Specifically, basic ECDSA sign algo-
rithm outputs o = (r,s), while a recovery bit v is addition-
ally output in EVM. During the verification algorithm,
basic ECDSA inputs o = (r,s) and pk to check if the sig-
nature is valid; however, in EVM, the public key is first
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derived from (r, s, v) as pk =r"1(s-R—z-G) mod g,
where r - G = {R,R'} and v is used to determine the cor-
rect point R from the two symmetry points on the curve.
Finally, the intermediate value pk is used to derive the
address of wallet which will be compared with the one
published and recorded on the blockchain. This process
is essentially a transformation of formulas in the verifi-
cation algorithm of basic ECDSA. Our implementation
strictly follows the specification of EVM.

Assume that Alice is an artist in the NFT system. She
generates a pair of public and private keys (sk.,pkc),
where sk, will be stored in her wallet. The pk, is used to
generate the address of wallet, which will be published
and recorded on the blockchain. When she wants to cre-
ate NFTs, the sk, is used to sign the request proving that
Alice is the true creator of those NFTs. The smart con-
tract of NFT uses the pk, to verify the signature. If the
signature is valid, the smart contract of NFT will mint
NFTs. When Alice wants to list NFTs on the marketplace,

Mint request
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she must sign the sale information using the sk.. If a buyer
Bob wants to purchase this NFT, the smart contract of
marketplace uses the pk, to verify the legitimacy of the
signature. If the signature is valid, the transaction will go
ahead, and the ownership of the NFTs will be transferred
from Alice to Bob, this operation is executed by the smart
contract of NFT.

We consider the case where Alice’s sk, is stolen by an
attacker Mallory, which does happen in practice. In cur-
rent NFT marketplaces, Mallory can use sk, to sign the
request of minting NFTs and list them on the market-
place. Since Mallory is using Alice’s sk, for signing, the
signature verification will succeed, and the marketplace
will consider it a valid transaction.

The proposed revocable signature can address the
above problem. Fig. 6 shows the workflow of applying
R-ECDSA into the system. In R-ECDSA, upon suspect-
ing the leakage of sk; and finding valid but unauthor-
ized NFTs occurring in the market, Alice can initiate
the Revoke algorithm in the system to mark valid but

P Mint
— + — — Buyer
& ¢ K c Verify ) l purch
SK_ pk_¢ t urchase
SECE NFT smart contract NET I
M Sale information
Creator T

_ iSale information |
AEK_c¢ AEK-com ¢ L%t +

(a) user registration

Mint gﬁ Mint
@ request’ Verify

Adversary Valid but

NFT smart contract
\Steal M

:
——
Marketplace

unauthorized NFT

1 Verify Valid M
S

Marketplace smart contract

(b) mint, list and transfer

Publish Revoke request

Revoke and burn ﬁ

‘Compare M and M

Creator

Verify with

(c) forged mint and revoke

Fig. 6 Application of R-ECDSA in the NFT system

Table 5 Key functions

Function Input Output Description
ecrecover () o address Recover an address from a signature
_safeMint () tokenld, metadata token Safely mint NFTs
approve () address, tokenld / Give permission to transfer NFTs
to another account
ownerOf () tokenld address Verify the current owner of the NFTs
safeTransferfrom () addresses, tokenld / Safely transfer NFTs
_burn () tokenld / Destroy tokenld
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unauthorized NFTs. The following subsections will show
how to deploy R-ECDSA in the NFT system and how the
consequences of private key leakage is alleviated. Table 5
shows the key functions and their input, output and
description used in the application.

User registration

When users register or log in to the marketplace, they
establish a secure communication channel by connecting
their wallet. This allows the marketplace to send requests
to the user’s wallet and query information such as the
NFTs and transaction history through the wallet address,
and display a personalized interface for the user.

Alice runs KeyGen algorithm to initialize system
parameter: Input a security parameter into wallet to gen-
erate a key pair (public key pk. and private key sk.) and
an Auxiliary Embedded Key pair (AEK,, AEK -com,).

The sk, is kept secret in the wallet, and the AEK, can be
stored in the meta-info of the wallet or a portable plug-and-
play oftline storage (USB, NFC cards, etc.), assuming they are
not leaked simultaneously. The pk, is used to generate the
address of the wallet, which will be published on the chain.
The AEK-com, will be deposited into a mapping on the
chain during the process of minting NFTs.

Bob runs KeyGen algorithm to initialize system param-
eter and generate a key pair (public key pk; and private
key skp), where skj, is kept secret in the wallet, and the
wallet address corresponding to pkj, will be published on
the chain.

It is worth noting that the introduction of AEK does
not interfere with the standard public key to address der-
ivation mechanism. Wallet addresses remain solely deter-
mined by pk, preserving full compatibility with existing
blockchain infrastructures.

Mint, list and transfer

Main operations in NFT system include mint, list and
transfer. After installing R-ECDSA in the blockchain, the
following procedures can be executed.

+ Mint: Alice runs Sign algorithm to generate the
request of minting NFTs. The smart contract of NFT
runs Verify algorithm to verify the request and
then mints NFTs.

1. Alice inputs sk;, AEK, and request to generate a
signature oyjps.

2. The smart contract of the NFT uses ecrecover () to
recover address from 0y, and compares it with the
address of Alice. The Ver i fy algorithm returns “1",
which means that o, is a valid signature.
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3. If oyine is valid, the smart contract of the NFT
calls the function _safeMint () to mint the NFT
and associate it with Alice’s address.

« List: Alice runs Sign algorithm and calls approve() to
list NFTs on the marketplace. Alice inputs sk, AEK,
and the sale information to generate a signature oy,
where the sale information includes the sale price of
NFTs, the expiration time, the tokenld and tokenAd-
dress (the address of the smart contract of NFT).
Then Alice calls approve () to give the smart contract
of the marketplace permission to operate NFTs.

« Transfer: Bob sends the request of purchase, then the
smart contract of marketplace runs Verify algo-
rithm to verify oy. If valid, the smart contract of
NFT transfer NFTs from Alice to Bob.

1. Bob proposes the request of purchase, where the
request includes the sale price of NFTs, the toke-
nld and the tokenAddress.

2. The mart contract of marketplace calls
_ownerOf () to check current owner. In addition,
the NFTs will be checked if it has expired.

3. Then the smart contract of marketplace uses
ecrecover () to recover address from oy and
compares it with the address of Alice. The
Verify algorithm returns “1", which means that
oyse s a valid signature.

4. After the validation passes, the smart contract
of NFT updates the owner of the NFTs to Bob’s
address through the function safeTransferFrom ()

If Mallory obtains Alice’s private key illegally, the above
operation executed by Alice can easily be implemented
by Mallory. Specifically, Mallory can use sk, to sign the
request of minting valid but unauthorized NFTs and
make them successfully uploaded to the marketplace.
Then, the valid but unauthorized NFTs can be traded
normally. Mallory also can construct a fake transaction
to transfer Alice’s NFTs to an address under his control.
The NFT marketplace will use Alice’s pk. to verify the
validity of the digital signature. If the signature verifica-
tion passes, the node will assume that the transaction was
authorized by Alice. Since Mallory is using Alice’s sk, for
signing, the signature verification will succeed, and the
marketplace will consider it a valid transaction.

Revoke
If Alice discovers the valid but unauthorized NFTs in the
marketplace, then she triggers a revocation operation.
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The smart contract runs Revoke algorithm to deal with
the valid but unauthorized NFTs.

1. Alice extracts AEK, from her wallet, inputs AEK,
into the smart contract of NFT and proposes a revo-
cation request.

2. The smart contract of NFT calculates if
AEK -com, = hask(AEK,) to ensure that the request
comes from Alice herself.

3. The smart contract of NFT runs the Revoke algo-
rithm. The output returns “1", which means that
Omint and oy are valid but unauthorized signatures.
Then the smart contract of NFT executes the revoca-
tion operation and these corresponding NFTs will be
marked as “burned” in the metadata of NFTs. These
corresponding tokenld will be destroyed through
_burn () and cannot perform any further transac-
tions.

Once a revocation process is completed, the system
must ensure that the compromised key is no longer usa-
ble in any future operation. The marketplace will update
the wallet address and unlink the old wallet address from
the user’s account. To continue using the system, Alice
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needs to restart the process from user registration. How-
ever, the specific steps go beyond the scope of this paper
and will therefore not be described in detail.

Discussion

This subsection introduces two different methods of rev-
ocation, the specific steps of _burn () and implementa-
tion considerations.

The method of revocation

Modification of existing smart contract. This approach
involves introducing a mapping into the existing smart
contract to track the revocation status of each NFT.
Specifically, each tokenld is associated with a boolean
flag indicating whether the token has been marked as
revoked. Once an NFT is identified as unauthorized, the
contract can prevent any further transfer operations by
setting the corresponding revoked flag. This mechanism
offers a lightweight and effective solution, enhances asset
protection for legitimate owners, and fosters greater trust
within the marketplace. However, it requires modifica-
tion of the contract and integration support from existing
marketplaces. More critically, the revocation cannot ret-
roactively invalidate transactions that have already been
finalized on-chain.

Algorithm 1 Revocation Mechanism in Modification of Existing Smart Contract

end function

_burn(tokenld);
end function

A SR T

mapping (uint256 = bool) public burnedTokens;
function REPORTANDMARKASBURNED(tokenlId)
isMarked AsBurned|[tokenld] = true;

function BURNUNAUTHORIZEDNF T (tokenlId)
require(isMarked AsBurned[tokenId]);

Table 6 Gas consumption for transaction operations (as of
August 9, 2025)

Operation Transaction Gas cost (in Gas cost (in Gas cost
gas cost Gwei) Ether) (in USD)
Mint 125,512 5145992 0.00005145992  0.21
Transfer 62,887 25783.67 0.00002578367 0.11
Revoke 87,566 35902.06 0.00003590206  0.15

Table 7 Comparison of gas cost between basic NFT transaction
process and our scheme

Operation Transaction gas cost Gas cost (in USD)

Basic Our scheme Basic Our scheme
process process

Mint 103,449 125,512 0.18 0.21

Transfer 72,318 62,887 0.12 0.11

Revoke / 87,566 / 0.15




Xia et al. Cybersecurity (2026) 9:97

Deploying a specialized smart contract. This
approach deploys a revocation registry contract on-chain
to store the revocation status of multiple NFTs. This solu-
tion not only integrates seamlessly with the original NFT
contracts but also allows third-party marketplaces (such
as OpenSea) to leverage the registry. Any marketplace
that supports Web3 can query this registry to verify the
validity of an NFT, as the revocation records are main-
tained in a standalone contract, independent of the spe-
cific NFT contract implementation. However, the storage
of revocation data in an external contract adds complex-
ity to the deployment. Additionally, each transfer opera-
tion requires interaction with the revocation registry
contract, which could incur higher transaction costs.

Comparative analysis. We compare the above two
methods across three dimensions:

« Security: The above methods present a trade-off
between isolated risk and coupled risk. The spe-
cialized-contract method offers stronger isolation.
Because the revocation logic resides in an independ-
ent contract, a compromise of a single NFT contract
does not endanger the integrity of the ecosystem’s
central registry. However, this architecture intro-
duces a new, centralized point of failure: the entire
ecosystem’s revocation capability becomes depend-
ent on the security and governance of this single reg-
istry. Conversely, modified-contract method avoids
this central dependency but couples the revocation
logic with the token’s core management functions.
This creates a larger, monolithic attack surface for the
individual contract, where a single bug in either the
NET logic or the revocation routine could compro-
mise the entire asset.

+ Performance: The modified-contract method is more
lightweight and effective. Because the revocation sta-
tus is stored locally, verifying it requires only a sin-
gle operation. Conversely, the specialized-contract
method architecture incurs significant gas cost, as
this method is defined by its reliance on interaction
with an external contract. Specifically, every transfer
operation must interact with the separate revocation
registry to verify an asset’s status. This mandatory,
cross-contract interaction effectively imposes a per-
sistent gas overhead on all users, increasing transac-
tion costs.

+ Ecosystem compatibility: The specialized-contract
method offers better compatibility. Because the rev-
ocation contract functions as an external module, it
can interoperate with multiple NFT standards and
support existing collections without code modifica-
tion. This enables post-hoc integration of revocation
capabilities into deployed ecosystems while preserv-
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ing blockchain immutability and user trust. By con-
trast, the modified-contract method is suitable only
for new NFT projects that can incorporate revoca-
tion logic during design time. It offers no practical
upgrade path for legacy tokens due to the immuta-
bility of deployed smart contracts. Consequently, its
applicability is limited in diverse NFT ecosystems.

The specific steps of _burn ()

In practical applications, _burn () achieves the goal of
permanently invalidating the NFT logically and eco-
nomically by clearing all ownership records and issuing
a standardized public event. The specific implementation
steps are as follows:

1. Use _ownerOf (tokenld) to confirm that the tokenld
to be destroyed actually exists.

2. Find the current owner and decrease the owner’s
holdings by 1 in the internal balance ledger.

3. Clear the mapping relationship between tokenld and
its owner, and set the address to address(0).

4. Use emitTransfer () to publish an announcement:
This NFT has been permanently burned. The trad-
ing marketplaces and various wallet applications will
capture this event. When they see that the to address
is address(0), they will remove this NFT from the
front-end interface or mark it as “burned".

Implementation considerations

Applying R-ECDSA to the current NFT ecosystem can
enhance its unauthorized signature revocation capa-
bilities. Signers can still prove that a signature was not
generated by them even after their private key has been
compromised, and the proof mechanism can be pub-
licly verified. However, to optimize the utilization of
R-ECDSA, the following two considerations need be
carefully implemented in practical.

First, AEK must be properly protected. AEK is key to
R-ECDSA as AEK serves as the exclusive credential for
triggering the revocation procedure. Possession of AEK
is therefore restricted to the true owner of sk. Given its
critical role, AEK must be stored separately from sk and
in a secure manner. One option is to embed it within
the wallet’s meta-info, which remains invisible to other
blockchain participants. Alternatively, AEK can be kept
in isolated offline storage, such as a hardware token, USB
device, or NFC card, ensuring that the compromise of a
single storage location does not simultaneously expose
both AEK and sk. This separation of trust significantly
reduces the risk of an attacker gaining full control over
the revocation capability.
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Second, check the marketplace frequently to quickly
identify NFTs under the user’s identity but not created by
themselves. As one of the core characteristics of block-
chain is its immutability. Once a transaction is included
in a block and confirmed by the network, it becomes an
immutable historical record. This implies that once a
transaction is recorded on the blockchain, it cannot be
undone, and any subsequent attempts to alter the con-
firmed transaction state are futile. Therefore, user should
check the marketplace frequently, or set up some auto-
matically notifying mechanism to send SMS/email when-
ever there are new NFTs listed in the marketplace under
their identity.

Blockchain cost

To evaluate the performance and cost of R-ECDSA in a
decentralized environment, we deploy our scheme in the
Remix VM environment, including the complete work-
flow from minting a NFT token to revoking a valid but
unauthorized NFT token. We test three times and record
the average value. Gas consumption for each opera-
tion of a single NFT is summarized in Table 6, using
the exchange rate 1 Ether = 4156.5 USD (as of August
9, 2025) and a gas price of 0.41 Gwei. Gas prices fluctu-
ate based on network congestion. During periods of high
congestion, gas prices tend to rise. To calculate the cur-
rent gas cost, we use the medium-priority gas price in
Gwei (the smallest unit of Ether) as reported by Ether-
scan. We then convert the gas cost from Gwei to Ether,
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and finally, multiply the amount of Ether by the current
ETH price to calculate the cost in USD.

The operation of mint requires 125,512 gas, which is
approximately 0.21 USD. This is a relatively gas-inten-
sive operation, as minting NFTs usually involves more
complex computational and storage operations, and
therefore its cost is higher. The operation of transfer
requires 62,887 gas, which is approximately 0.11 USD,
and the operation of revoke requires 87,566 gas, which
is approximately 0.15 USD. The operation of transfer
has the lowest gas cost because it only involves updating
the data and does not require complex computations or
large-scale storage operations. The gas costs for revoke
is intermediate, involving the mark and burn of valid but
unauthorized NFTs. This operation is relatively less com-
plex. These gas costs indicate that our implementation
achieves a practical balance between security enhance-
ment and economic efficiency in NFT system.

Table 7 illustrates the performance comparison
between basic NFT transaction process and our scheme.
Basic NFT transaction process only have the opera-
tions of mint and transfer, and the whole process doesn’t
involve AEK. The results indicate that our scheme is com-
parable with those in basic NFT transaction process. The
gas cost of revoke operation only needs 0.15 USD.

The above data is a cost analysis of operations per-
formed on one token. Figure 7 shows the comparison of
the gas cost of each operation based on different num-
ber of tokens (from 1 to 100). Where x-axis represents

564 Mint

Transfer
Revoke

0O 151

(Vp)]

=]

£

ﬁ 10 4

(@)

(@)

(V)]

©

O |

0 .
(') 1b 2'0 3‘0 4'0 Sb 6'0 7'0 8'0 9‘0 1(30

The number of tokens

Fig. 7 Comparison of the gas cost of each operation based on different number of tokens
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the number of tokens and y-axis represents the gas cost
in USD. It is clear from the figure that gas costs increase
linearly with the number of tokens.

Conclusion

In this paper, we addressed critical security challenges in
the rapidly evolving NFT ecosystem and digital signature,
with a particular focus on the risks associated with pri-
vate key leakage. Given the potential for private key com-
promises to lead to the creation of valid but unauthorized
NFTs, which can be accepted in the market, we proposed
a novel revocable signature scheme aimed at enhancing
the security resilience of NFT systems.

To demonstrate the effectiveness of R-ECDSA, we
introduced a general system overview for implementing
the scheme and designed a concrete ECDSA-based con-
struction. The existential unforgeability of R-ECDSA
is proved based on the assumption of ECDSA’s EU-
CMA. Additionally, we showed that the performance of
R-ECDSA is comparable to traditional schemes, offer-
ing efficient performance without sacrificing security.

Beyond the technical details, R-ECDSA contributes
to addressing the growing concerns around private key
security in the context of NFTs, offering a practical and
scalable solution for safeguarding digital assets. Moreo-
ver, R-ECDSA opens the door for future research into
the broader application of revocable signatures in block-
chain-based systems.

While R-ECDSA can effectively alleviate the con-
sequences of private key leakage in NFT system, we
acknowledge several limitations. First, the current design
primarily operates before the phase of trading. Once an
NFT transaction is finalized and revenue enters circula-
tion, revocation becomes challenging due to the irrevers-
ible nature of blockchain-based asset transfers. However,
this limitation stems from broader economic and regula-
tory complexities rather than cryptographic weaknesses.
Second, our current scheme requires the AEK, to be pub-
licly revealed to the smart contract during revocation.
This forces the user to execute a full key rotation (for
ske, pke, and AEK,) after every incident, imposing opera-
tional overhead. Finally, our security model fundamen-
tally relies on the assumption that sk, and AEK, are not
compromised simultaneously.

Future research aims to bridge the gap and lay the
foundation for a more secure and resilient NFT ecosys-
tem, where creators’ assets and identities are better pro-
tected against the growing threat of private key leakage.
A primary goal is to eliminate the public revelation of
AEK,. We plan to design a new mechanism using Zero-
Knowledge Proof (ZKP), which would allow an owner
to prove an unauthorized signature without reveal-
ing the AEK,, thus removing the need for key rotation.
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Furthermore, future research will focus on extending
R-ECDSA to address more complex and practical threat
models. Specifically, we plan to investigate cross-con-
tract replay attacks, in which revoked signatures might
be maliciously reused across interoperable NFT market-
places, and delayed revocation abuse, where attackers
exploit the temporal gap between signature compromise
detection and on-chain revocation execution. Further-
more, we aim to explore on-chain revocation oracles and
incentive-compatible mechanisms that enable post-trade
mitigation through collaboration between cryptographic
design and blockchain governance. These directions are
expected to bridge the gap between theoretical security
guarantees and real-world operational resilience, paving
the way toward a more comprehensive defense frame-
work for NFT ecosystems.
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