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ABSTRACT
Consensus algorithms play an essential role in blockchains, directly
impacting their performance. These algorithms involve validating
and ordering pending transactions into new blocks, a process that
exposes data to consensus nodes, raising privacy concerns. While
existing consensus algorithms focus on network security and per-
formance, data privacy within the consensus layer has received
limited attention. This study introduces ZK-BFT, a zero-knowledge
and Byzantine fault-tolerant consensus algorithm for permissioned
blockchains. ZK-BFT verifies transactions without disclosing origi-
nal information to consensus nodes, enhancing data privacy within
the consensus layer while maintaining Byzantine fault tolerance.
Our experiments, using the Hyperledger Ursa cryptographic li-
brary and Hyperledger Fabric permissioned blockchain, demon-
strate ZK-BFT’s potential for integration into existing permissioned
blockchain systems that require privacy-by-design and Byzantine
fault tolerance.

CCS CONCEPTS
• Networks→ Network protocols; • Security and privacy→
Network security; Cryptography.
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1 INTRODUCTION
A permissioned blockchain is a decentralized network where access
and data management are restricted to a predefined group of partic-
ipants or entities, ensuring controlled and secure transactions. The
consensus algorithm is a key component of blockchain systems,
and the dispersed blockchain nodes utilize it to reach agreements
on the order of transactions to be included in the next block. The
consensus process ensures the security of the blockchain and the
integrity of the associated data by validating all new transactions
before they are committed to the global ledger and replicated on
all participating nodes. Additionally, consensus algorithms largely
impact the overall performance of a blockchain system such as
transaction throughput, latency and fault tolerance [1].

While many consensus algorithms prioritize application security
and performance, addressing data privacy within the blockchain’s
consensus layer remains underdeveloped. During consensus pro-
cessing, nodes validate and order transactions, necessitating the
verification of application-specific data within transactions. This
exposes data to consensus nodes, raising privacy concerns, particu-
larly in sensitive sectors like healthcare [9, 10] and transportation
[11, 14, 15, 17] subject to regional privacy regulations. This shortfall
could impede the practicality of deploying valuable blockchain sys-
tems. Therefore, blockchain technology and its applications stand
to gain significantly from a consensus algorithm that inherently
safeguards data privacy within the consensus layer.

Nevertheless, some permissioned blockchain platforms have
attempted to solve the privacy problem outside of the consensus
layer in creative ways. For example, in the popular Hyperledger
Fabric permissioned blockchain platform 1, privacy is primarily
preserved either at the channel level through membership and
chaincode access permissions, or by using off-chain storage for
sensitive data [5]. In the first case, application-specific channels for
transactions and smart contracts are deployed and maintained by
the governing consortium, and permission to view and transact on
a given channel is granted or revoked by the consortium members.
However, in this approach the underlying data encapsulated within
the blockchain transactions is not protected, and the consensus
nodes must have access to it in order to verify the transaction
details. In the second case, off-chain storage approaches can be
leveraged to preserve the data privacy, but still do not solve the
underlying problem of privacy-preservation directly within the
consensus process. This motivates our research into the proposed
ZK-BFT consensus, which integrates privacy-preserving directly
into the consensus layer while still enabling fast processing and

1https://www.hyperledger.org/projects/fabric
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Byzantine fault tolerance, expanding the potential use-cases for
permissioned blockchain technology.

In this study, we address the issue of data privacy within
the blockchain consensus layer by proposing a novel privacy-
preserving and Byzantine fault tolerant consensus, ZK-BFT, de-
signed for use in permissioned blockchains. The proposed ZK-BFT
consensus algorithm integrates zero-knowledge proof (ZKP) for
blockchain data directly into the consensus processing, ensuring
data privacy while still providing fast performance and Byzantine
fault tolerance. Until now, previous works [2, 3, 6] have focused
on providing privacy to blockchain data either outside of the con-
sensus process or being applied in the context of permissionless
blockchains for cryptocurrency trading, which have different trust
and identity assumptions than their permissioned counterparts. To
the best of our knowledge, this is the first work to address zero-
knowledge privacy within the BFT consensus layer of permissioned
blockchains. To summarize, this paper makes the following contri-
butions:

• We propose the ZK-BFT consensus that brings both zero-
knowledge privacy and Byzantine fault tolerance to the con-
sensus layer of permissioned blockchain systems.

• We present ZKP-based algorithms and a view change pro-
tocol that provide built-in privacy and liveness for ZK-BFT
consensus.

• We analyze the properties of ZK-BFT including the correct-
ness proof, privacy-preserving, fault tolerance and communi-
cation complexity, and compare its performance with other
typical consensus algorithms.

• We conduct experiments to show the performance of ZK-BFT
using Hyperledger Ursa cryptographic library and Hyper-
ledger Fabric blockchain platform.

2 RELATEDWORK
Zero-knowledge proofs, initially proposed by Goldwasser et al. [8],
allow a prover to convince a verifier of their knowledge of a secret
message 𝑚 while revealing nothing else except their possession
of𝑚. These proofs excel in demonstrating possession of a secret
without revealing any additional information about it. Research
has led to two main types of ZKP protocols: interactive and non-
interactive. Interactive ZKP requires a dialogue between the prover
and verifier, with multiple challenges for the prover to address,
ensuring the verifier’s conviction in the prover’s knowledge. Non-
interactive ZKP allows the prover to generate a proof that can be
independently verified, reducing the communication overhead of
the proof system.

The inherent properties of ZKP offer a means of ensuring trans-
action input validity in blockchain systems while safeguarding sen-
sitive information. Notably, ZKP protocols have been introduced
to enhance data privacy within cryptocurrency systems. For in-
stance, zk-SNARK [3] was the pioneering ZKP protocol integrated
into Zcash 2 cryptocurrency in 2012, ensuring privacy for financial
transactions on a PoW-based ledger. Subsequently, Bulletproofs,
introduced in 2018 and implemented in Monero cryptocurrency 3,
enables efficient proof of a committed value within a range [6]. In

2https://z.cash/
3https://www.getmonero.org/

Ethereum blockchain 4, zk-STARK [2] is explored for transaction
data privacy without relying on a trusted setup, offering enhanced
privacy and reduced trust assumptions compared to zk-SNARK.

However, the existing zero-knowledge protocols have either
been applied to permissionless blockchain networks to protect the
privacy of cryptocurrency transactions [3, 6], or are implemented
at the smart contract layer outside of the consensus processing [2].
This motivated our research into the proposed ZK-BFT consensus,
which inherently preserves data privacy from consensus layer while
also offering Byzantine fault tolerance, designed specifically for use
in permissioned blockchain systems.

3 ZK-BFT CONSTRUCTION
3.1 Consensus Overview
There are four entities including the certificate authority and three
types of nodes participating in the ZK-BFT consensus. The proposed
consensus also consists of ZKP-based algorithms that generates
and verifies transaction requests without revealing the message,
and a view change protocol that guarantees the network liveness.
We define the following entities that take part in the proposed
consensus:

• Certificate Authority (CA): The CA verifies clients’ digital
asset ownership by issuing key pairs. Clients receive private
keys for generating zero-knowledge proofs, while public
keys are shared with the primary node and replica nodes for
validation.

• Client Node: Client nodes handle the generation of zero-
knowledge proofs and the transmission of transaction re-
quests.

• Primary Node: The primary node, functioning as a healthy
leader, is in charge of receiving and forwarding transaction
requests, constructing and publishing blocks, as well as ver-
ifying and voting on transactions alongside replica nodes.
Each consensus process involves a single primary node.

• Replica Node: Replica nodes are responsible for validating
transactions and assessing the leader’s status for voting.

In our design, consensus nodes include both primary node and
replica nodes. The certificate authority issues private keys to clients
for generating zero-knowledge proofs and public keys to consensus
nodes for verifying the proofs. Transaction requests are generated
by clients in ZKP format that hide the original information. Once
receiving the transaction request from a client, the primary node
forwards it, and all consensus nodes will verify and confirm the
transaction request. The consensus is technically reached when
the client receives at least (𝑁 − 1)/3 + 1 replies from a total num-
ber of 𝑁 consensus nodes. Next, we present the detailed ZK-BFT
consensus construction including the consensus processing and
the view change protocol. Table 1 shows the variables we use in
constructing the proposed consensus algorithm.

3.2 Consensus Processing
Referring to Fig. 1, the ZK-BFT consensus algorithm comprises
the following steps: the certificate authority issues key pairs to
clients and consensus nodes; the client sends a request; the primary

4https://ethereum.org/en/
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Table 1: Variables in ZK-BFT Consensus Algorithm

Variable Description
𝑚 Secret message in the transaction (e.g., digital assets)
𝑠𝑘 Private key for generating the zero-knowledge proof
𝑝𝑘 Public key for verifying the zero-knowledge proof
G Multiplicative cyclic group of prime order 𝑝
𝑔 Generator in G
ℎ Hash digest based on the secret message𝑚
𝛿 Generated one-time zero-knowledge proof
𝑒 Elliptic curve for bilinear pairing
𝑟 Result for verifying the zero-knowledge proof (true or false)
𝑓 Number of faculty consensus nodes
𝑁 Total number of consensus nodes
𝑖𝑑 Identifier for the secret message𝑚
𝑣 View number (period that a given node is the primary)
𝑖 Identifier for the replica node
𝑐 Transaction confirmation result

node forwards the request; all consensus nodes perform Verify
and Confirm processes; the client receives a response confirming
consensus. These steps constitute the core of the ZK-BFT consensus
algorithm. Consensus is reached when the client obtains at least
𝑓 + 1 replies (𝑓 represents the number of faulty nodes) from nodes,
validating the final consensus among a total of 3𝑓 + 1 replicas. The
proposed consensus process is detailed as follows:

3.2.1 Setup. Inherent to a zero-knowledge proof scheme is the ne-
cessity for the verifier to precisely understand what is being proven
to prevent the prover from producing fraudulent proofs. In this pro-
cedure, the certificate authority employs Algorithm 1 to generate
key pairs for the certified digital assets of clients. The Setup process
is a one-time operation, and the certificate authority dispatches
the setup message < 𝑆𝐸𝑇𝑈𝑃, 𝑖𝑑, 𝑠𝑘, 𝑝𝑘 > to the client node, along
with setup messages < 𝑆𝐸𝑇𝑈𝑃 ′, 𝑖𝑑, 𝑝𝑘 > to the consensus nodes.
Here, 𝑖𝑑 serves as an identifier to specify the original message𝑚
(e.g., digital asset), 𝑠𝑘 signifies the private key, and 𝑝𝑘 represents
the public key.
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐾𝑒𝑦 (𝑚) −→ (𝑠𝑘, 𝑝𝑘): This algorithm chooses a random

𝑠𝑘 ∈ Z𝑝 and computes 𝑝𝑘 = 𝑔𝑠𝑘 ∈ G. Return the private key 𝑠𝑘 and
the public key 𝑝𝑘 for the message𝑚.

3.2.2 Request. During this procedure, the client employs Algo-
rithm 2 to create a one-time zero-knowledge proof 𝛿 using the

Setup Request Forward Verify Confirm Finish

Client

Primary

Replica 1

Replica 2

Replica 3

CA

Figure 1: The proposed ZK-BFT consensus processing.

Algorithm 1: GenerateKey
Input : secret message𝑚
Output :private key 𝑠𝑘 , public key 𝑝𝑘

1 The certificate authority selects a random 𝑎 ∈ Z𝑝 for
message𝑚;

2 The certificate authority saves the private key as 𝑠𝑘 = 𝑎;
3 The certificate authority computes the public key as

𝑝𝑘 = 𝑔𝑠𝑘 ∈ G;
4 The certificate authority returns 𝑠𝑘 and 𝑝𝑘 .

original message 𝑚. Subsequently, the client initiates the trans-
mission of a request < 𝑅𝐸𝑄𝑈𝐸𝑆𝑇, 𝑖𝑑, ℎ, 𝛿 > to the system, with ℎ
representing the hash digest of the original message𝑚.

Algorithm 2: GenerateProof
Input : secret message𝑚, private key 𝑠𝑘
Output :one-time zero-knowledge proof 𝛿

1 The client computes a hash digest ℎ based on the secret
message𝑚, as ℎ = 𝐻 (𝑚);

2 The client generates the one-time zero-knowledge proof
𝛿 = ℎ𝑠𝑘 ∈ G;

3 The client returns 𝛿 .

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑟𝑜𝑜 𝑓 (𝑚, 𝑠𝑘) −→ (𝛿): This algorithm first computes
a one-time hashed messages𝑚, in SHA256 algorithm [19], as ℎ =

𝐻 (𝑚). Then, it computes a one-time 𝛿 = ℎ𝑠𝑘 ∈ G and returns
the proof 𝛿 . Elliptic curves usually have about 2256 points [4], and
SHA-256 hashing algorithm can offer a 256-bit result.

3.2.3 Forward. The primary node publishes a new block and broad-
casts the client’s request in messages < 𝐹𝑂𝑅𝑊𝐴𝑅𝐷, 𝑖𝑑,

ℎ, 𝛿, 𝑣 > to the other replica nodes. The 𝑣 represents the view num-
ber.

3.2.4 Verify. Replica nodes receive the forwarded messages and
perform the following verifications: (1) The node is currently in
view 𝑣 ; (2) The node does not possess other Forward messages on
the same page (view 𝑣 , message identifier 𝑖𝑑). In other words, there
is no additional set of (ℎ′, 𝛿 ′) that shares the samemessage identifier
𝑖𝑑 with the set of (ℎ, 𝛿) in the present view 𝑣 ; (3) The node executes
Algorithm 3 to validate the one-time zero-knowledge proof 𝛿 with-
out accessing the original message 𝑚. Following the successful
verification, replica nodes dispatch the corresponding verification
messages < 𝑉𝐸𝑅𝐼𝐹𝑌, 𝑖𝑑, ℎ, 𝛿, 𝑣, 𝑖, 𝑟 > to the other consensus nodes.
Here, 𝑖 denotes the identity of the replica node, and 𝑟 is a Boolean
value (𝑡𝑟𝑢𝑒 or 𝑓 𝑎𝑙𝑠𝑒) that indicates the verification result.
𝑉𝑒𝑟𝑖 𝑓 𝑦𝑃𝑟𝑜𝑜 𝑓 (𝛿, 𝑝𝑘, 𝑔, ℎ) −→ (𝑡𝑟𝑢𝑒/𝑓 𝑎𝑙𝑠𝑒): This algorithm

takes the proof 𝛿 , the public key 𝑝𝑘 , the generator 𝑔 and the hashed
identity information ℎ as input and check if 𝑒 (𝛿, 𝑔) = 𝑒 (ℎ, 𝑝𝑘). Fi-
nally, the function returns a Boolean value either true or false to
validate the proof 𝛿 without compromising the information of the
message𝑚.

3.2.5 Confirm. Each consensus node needs to receive at least
2𝑓 verification messages from other consensus nodes (a total of
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Algorithm 3: VerifyProof
Input :one-time zero-knowledge proof 𝛿 , public key 𝑝𝑘 ,

generation 𝑔, hashed secret message ℎ
Output :verification result 𝑟

1 The consensus node checks if 𝑒 (𝛿, 𝑔) == 𝑒 (ℎ, 𝑝𝑘) then
2 𝑟 = 𝑡𝑟𝑢𝑒 ;
3 else
4 𝑟 = 𝑓 𝑎𝑙𝑠𝑒 ;
5 end
6 The consensus node returns 𝑟 .

2𝑓 + 1 including its own) and validates if the 𝑖𝑑, ℎ, 𝛿, 𝑣 of these
verification messages are all consistent. Once validation is com-
pleted, the consensus node will set the confirmation message
< 𝐶𝑂𝑁𝐹𝐼𝑅𝑀, 𝑖𝑑, ℎ, 𝛿, 𝑣, 𝑖, 𝑐 > to true, and broadcast it to the other
consensus nodes. The 𝑐 is a Boolean value that indicates its confir-
mation result.

3.2.6 Finish. Once in the Finish phase, each node commits the
block for which they have the corresponding Forward, 2𝑓 + 1 Verify,
and 2𝑓 + 1 Confirm messages. After the block is successfully com-
mitted to the chain, each node sends a confirmation message to the
client to indicate consensus has been achieved for its request.

In the event the client fails to collect 𝑓 +1 Finishmessageswithin a
time period 𝑡 , the client resends the request to the primary node for
a retry. Upon receiving the same request, if consensus has already
been reached during the Confirm phase, replicas retransmit the
Finish messages. If consensus has not been reached, the network
restarts the protocol.

3.3 View Change Protocol
A view represents the duration during which a specific node acts as
the primary. Consequently, a view change entails transitioning to a
different primary node. Our proposed ZK-BFT consensus ensures
network liveness through a view change protocol, as illustrated in
Fig. 2. When a replica node (e.g., replica node 1) identifies a fault
in the current view 𝑣 , such as the primary node sending an invalid
message or failing to produce a valid block in a timely manner, it
broadcasts a view change request for 𝑣 + 1 to the other nodes in the
network. Upon receiving the request, the other nodes validate it
through communication with the current primary node. If indeed
the primary is found to be faulty, all non-faulty nodes broadcast
confirmation messages for the view change.

When replica node 1 receives 2𝑓 confirmation messages from
other nodes (a total of 2𝑓 + 1 including its own), it will broadcast a
new view message for view 𝑣 + 1 to all nodes including the client
node.When the other nodes receive the new viewmessage, theywill
switch to the new view, and the new primary will start publishing
blocks, receiving and forwarding clients’ request messages.

4 THEORETICAL ANALYSIS
In this section, we first give a formal proof under the proposed ZK-
BFT consensus design. Next, we discuss how privacy-preserving
and Byzantine fault tolerance are addressed in ZK-BFT consensus.
We then analyze the performance of ZK-BFT consensus from the

View-Change Verify Confirm New-View

Faulty Primary

Replica 1

Replica 2

Replica 3

Client

Figure 2: View change protocol in ZK-BFT. (The primary node
is faulty and the replica node 1 will become the new primary
node.)

perspective of communication complexity, and compare ZK-BFT
with other state-of-the-art consensus algorithms.

4.1 Correctness Proof
Proposition 1. The proposed ZK-BFT consensus can accurately val-
idate transaction requests without disclosing the original message
𝑚.

Assuming a client generates the zero-knowledge proof 𝛿 for the
message𝑚 and transmits this proof 𝛿 along with the transaction
request to the primary node.We demonstrate the validation of proof
𝛿 through Algorithm 3. Initially, the public key 𝑝𝑘 is computed as
follows:

𝑝𝑘 = 𝑔𝑠𝑘 , (1)
Then, a one-time zero-knowledge proof is generated as:

(𝑚, 𝑠𝑘) −→ 𝛿 = 𝐻 (𝑚)𝑠𝑘 = ℎ𝑠𝑘 , (2)

Next, verifying the proof 𝛿 is done by checking that if:

𝑒 (𝛿, 𝑔) = 𝑒 (ℎ, 𝑝𝑘), (3)

Now, we prove the Equation 3 based on bilinear pairing property:

𝑒 (𝛿, 𝑔) = 𝑒 (ℎ𝑠𝑘 , 𝑔)

= 𝑒 (ℎ,𝑔𝑠𝑘 )
= 𝑒 (ℎ, 𝑝𝑘).

(4)

Bilinear Pairing Property: LetG be a multiplicative cyclic group of
prime order 𝑝 with generator 𝑔. Let 𝑒 : G×G→ G𝑇 be a computable,
bilinear and non-degenerate pairing into the group G𝑇 . Then, we
have 𝑒 (𝑥𝑎, 𝑦𝑏 ) = 𝑒 (𝑥,𝑦)𝑎𝑏 for all 𝑥,𝑦 ∈ G and 𝑎, 𝑏 ∈ Z𝑝 because G
is cyclic.

4.2 Privacy-preserving
Proposition 2. The proposed ZK-BFT consensus can protect transac-
tion privacy during consensus processing.

As shown in Equation 2, a one-time zero-knowledge proof 𝛿
is generated based on the hashed message𝑚 and private key 𝑠𝑘 .
Instead of sending the original message𝑚 to consensus processing,
peer nodes in ZK-BFTwill use Equation 3 to validate the proof 𝛿 and
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reach into consensus. In this way, a transaction will be processed
without revealing any details about the original message𝑚 to peer
nodes. If an attacker intercepts the zero-knowledge proof 𝛿 , it still
cannot decrypt the original message𝑚. This is because the hash
digest 𝐻 (𝑚) is one-way generated using the SHA-256 algorithm,
and as a result, the generated proof 𝛿 from Equation 2 is a unique
and one-time proof that cannot be reversed.

4.3 Crash Fault Tolerance
Proposition 3. The proposed ZK-BFT consensus can tolerate up to 𝑓
nodes that fail for communication (𝑓 = (𝑁 − 1)/3). In other words,
ZK-BFT consensus can offer 1/3 crash fault tolerance.

Crash fault tolerance (CFT) is one level of resiliency, where
the distributed system can still correctly reach consensus if certain
nodes fail for communication. Given a total number of 𝑁 consensus
nodes (𝑁 = 3𝑓 +1), each node needs to receive at least 2𝑓 verification
messages from other nodes to successfully process the Confirm
phase resulting in (𝑁 − 1)/3 crash fault tolerance.

4.4 Byzantine Fault Tolerance
Proposition 4. The proposed ZK-BFT consensus can tolerate up to 𝑓
nodes that send malicious messages (𝑓 = (𝑁 − 1)/3). In other words,
ZK-BFT consensus can offer 1/3 Byzantine fault tolerance.

Byzantine fault tolerance (BFT) builds a more complex level of re-
siliency and deals with distributed systems that certain nodes could
have malicious actors. BFT is enabled during ZK-BFT consensus
processing. Given a total number of𝑁 consensus nodes (𝑁 = 3𝑓 +1),
the ZK-BFT can still reach a consensus when a maximum number
of 𝑓 nodes send malicious messages. We will prove this under the
worst circumstance.

First, in the Verify phase, we divide the non-fault nodes into
three groups: (1) 𝑓 non-fault nodes with decision 𝐴; (2) 𝑓 non-
fault nodes with decision 𝐵; and (3) one remaining non-fault node.
Then 𝑓 malicious nodes tell the first non-fault node group that
they support decision 𝐴, and tell the second non-fault node group
that they support decision 𝐵. Now, in the Confirm phase, decision
𝐴 has gathered 2𝑓 votes from the first group’s point of view, and
decision 𝐵 has gathered 2𝑓 votes from the second group’s point of
view. Then after the remaining one non-fault node broadcasts its
decision, consensus will be reached: one of the groups becomes the
majority and the other becomes the minority. In conclusion, the
ZK-BFT consensus can offer (𝑁 − 1)/3 Byzantine fault tolerance.

4.5 Communication Complexity
Proposition 5. For a total node count of 𝑁 , comprising one primary
node and 𝑛 replica nodes (𝑁 = 𝑛 + 1), the communication complexity
for achieving consensus in the proposed ZK-BFT is 𝑂 (𝑁 2).

The communication complexity of ZK-BFT is on the order of 𝑁 2

due to the peer-to-peer and all-to-all communications during the
Verify and Confirm phases, as illustrated in Fig. 1. To elaborate, in
the Verify phase, each replica node sends its verification results to
all other consensus nodes, including the primary node, resulting
in a total of (𝑁 − 1) · 𝑁 messages. In the Confirm phase, every
consensus node, including the primary node, checks the consistency
of verification results from other nodes and broadcasts confirmation

messages to all other consensus nodes, generating a total of 𝑁 · 𝑁
messages.

4.6 Comparison Analysis
In this subsection, we compare the properties and performance
among the proposed ZK-BFT and other typical consensus algo-
rithms for blockchain networks. To the best of our knowledge, the
proposed ZK-BFT and its previous version P-CFT [16] are the first
two mechanisms that have built-in zero-knowledge privacy from
blockchain consensus layer. In comparison with our previous P-CFT
study, the ZK-BFT consensus is re-designed and further improves
the fault tolerance level against Byzantine attacks.

Proof of Work (PoW) [12] and Proof of Stake (PoS) [20] are two
commonly used consensus algorithms in permissionless blockchain.
In PoW, miners consume huge amounts of computing power to com-
pete with each other, add blocks of transactions to the blockchain,
and get rewardedwithmore coins. As a result, PoW can only process
transactions in low throughput and high latency, whose commu-
nication complexity is 𝑂 (𝑁 2). The communication complexity of
PoS is the same as PoW. However, the performance was slightly im-
proved in PoS because mining power is given based on the amount
of coins held by a miner. Both PoW and PoS can offer (𝑁 − 1)/2
Byzantine fault tolerance, but at the cost of greatly increased re-
source consumption and reduced throughput in comparison with
permissioned blockchain consensus algorithms.

In permissioned blockchain, consensus algorithms are designed
to be computationally inexpensive, and performance are distinctly
improved because only a smaller group of nodes are needed for
validation purposes. In Raft consensus [18], every node in the repli-
cated state machine can participate in any three states: follower,
candidate, and leader. The leader is responsible for log replication
to the followers, and a candidate can be elected as the new leader
when the current leader fails for communication. Raft can provide
higher transaction throughput and lower transaction latency be-
cause all followers trust the leader node and the communication
complexity of Raft is only 𝑂 (𝑁 ). However, Raft can not tolerate
Byzantine failure when some nodes send malicious information
during consensus processing.

In terms of Byzantine fault tolerance for permissioned
blockchains, these BFT-type consensus algorithms, such as pBFT
[7] and Tendermint [13], are able to deal with Byzantine nodes that
behave arbitrarily. In pBFT, Byzantine fault tolerance is achieved by
requiring multiple rounds of voting by the set of verifiers to arrive
at a mutual agreement, which is recorded as a collection of signa-
tures on the block content. Tendermint is an extension of original
pBFT with optimised gossip-based communication and designed for
high number of nodes. As we analyze above, our proposed ZK-BFT
consensus can offer the same Byzantine fault tolerant rate and com-
munication complexity with pBFT and Tendermint. Moreover, the
proposed ZK-BFT can verify transactions without revealing details
due to the zero-knowledge algorithm design. In Table 2, we provide
a summary of the comparisons for the consensuses discussed in
this subsection.
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Table 2: Comparisons of the proposed and other typical consensus algorithms.

Consensus Blockchain Type Zero-knowledge Byzantine Fault Tolerance Communication Complexity Throughput Latency
PoW [12] Permissionless × ✓, (𝑁 − 1)/2 𝑂 (𝑁 2) low high
PoS [20] Permissionless × ✓, (𝑁 − 1)/2 𝑂 (𝑁 2) medium medium
Raft [18] Permissioned × × 𝑂 (𝑁 ) high low
pBFT [7] Permssioned × ✓, (𝑁 − 1)/3 𝑂 (𝑁 2) high low

Tendermint [13] Permssioned × ✓, (𝑁 − 1)/3 𝑂 (𝑁 2) high low
P-CFT [16] Permissioned ✓ × 𝑂 (𝑁 2) high low

ZK-BFT (proposed) Permissioned ✓ ✓, (𝑁 − 1)/3 𝑂 (𝑁 2) high low

5 EXPERIMENTS AND EVALUATION
5.1 Experiment Setup
The zero-knowledge proof is the core component of the ZK-BFT
that brings privacy-preserving into consensus processing. We first
present the implementation of the proposed zero-knowledge proof
algorithms, which are written in Rust programming language uti-
lizing the Hyperledger Ursa library. Then, we conduct a series
of experiments to measure the performance of the ZK-BFT con-
sensus algorithm. We also compare ZK-BFT with other existing
zero-knowledge protocols that provide privacy for blockchain. The
implementation and experiments are deployed on Ubuntu 18.04
operating system with 2.8 GHz Intel i5-8400 processor and 32GB
DDR4 memory. The initial consensus group consists of 20 replica
nodes, and we increase the nodes group from 20, to 40, 60, 80 and
100 in experiments.

5.2 Performance
In this subsection, we present the experimental results that measure
the performance of the proposed ZK-BFT consensus. The results
include transaction size, transaction generation time, transaction
verification time and transaction latency by varying the number of
transactions, and message counts from consensus processing and
view change operation by varying the number of replica nodes in
the network:

101 102 103 104
0

50

100

150

200

250

300

350

400

450
zk-SNARKs
Bulletproofs
zk-STARKs
FS-ZKP

900 1000 1100
0

1

2

9800 9900 10000
0

5

10

15
ZK-BFT

Tr
an

sa
ct

io
n 

Si
ze

 (M
B

)

Figure 3: The relationship between total transaction size and
number of transactions from the proposed ZK-BFT and other
state-of-the-art ZKP protocols.
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Figure 4: The relationship between transaction latency and
number of transactions from the proposed ZK-BFT and other
state-of-the-art ZKP protocols.

5.2.1 Transaction Size. Transaction size is an important consid-
eration for blockchain networks. Smaller transactions are easier
to validate; larger transactions take more work, and take up more
space in the block. To evaluate the transaction size of the proposed
ZK-BFT consensus, we conduct multiple groups of experiments
with the number transactions varying in this section. As shown in
Fig. 3, ZK-BFT takes only 2MB for processing 10,000 transactions in
the network , which is more efficient than zk-SNARKs (3MB) and
saves tens of megabytes compared to Bulletproof and hundreds of
megabytes compared to zk-STARKs.

5.2.2 Transaction Latency. By considering the transaction genera-
tion and verification time together, Fig. 4 displays the total transac-
tion latency by varying the number of transactions. The proposed
ZKP takes only 40 minutes to process 10,000 transactions in ZK-BFT
consensus, which saves hundreds of minutes from zk-SNARKs and
zk-STARKs and even thousands of minutes from Bulletproofs.

5.2.3 Number of Messages. In ZK-BFT, consensus nodes reach into
agreements by rounds of communication. Therefore, the number
of consensus nodes in the network will impact the number of ex-
changed messages during consensus processing and view change
operation. We increase the number of replica nodes from 20, to
40, 60, 80 and 100, and record the number of exchanged messages
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for nodes communication. By considering varying the number of
replica nodes in the network, Fig. 5 shows the number of exchanged
messages from each step during ZK-BFT consensus processing, and
Fig. 6 shows the number exchanged messages from each step in
ZK-BFT view change operation.

During ZK-BFT consensus processing, the primary node is the
only one representative from the network to receive the trans-
action request from the client. Consequently, there is only one
message sent at the 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 step even we increase the number
of replica nodes. In 𝑆𝑒𝑡𝑢𝑝 , 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 and 𝐹𝑖𝑛𝑖𝑠ℎ steps, the num-
ber of exchanged messages will increase linearly. The 𝑉𝑒𝑟𝑖 𝑓 𝑦 and
𝐶𝑜𝑛𝑓 𝑖𝑟𝑚messages will have exponential growth due to the 𝑁 -to-𝑁
communications.

In ZK-BFT view change operation, the𝑉𝑒𝑟𝑖 𝑓 𝑦 messages becomes
linear growth because each replica node only needs to communi-
cate once with the current faulty primary node. The𝑉𝑖𝑒𝑤 −𝐶ℎ𝑎𝑛𝑔𝑒
request and 𝑁𝑒𝑤 −𝑉𝑖𝑒𝑤 result messages show linear growth be-
cause of the one-to-𝑁 communications by the future new primary
node. The 𝐶𝑜𝑛𝑓 𝑖𝑟𝑚 messages will stay exponential growth due to
the 𝑁 -to-𝑁 communications to reach into an agreement on the
new primary node.
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Figure 5: The relationship between number of exchanged
messages and number of replica nodes from each step in
ZK-BFT consensus processing.

6 CONCLUSION
This paper proposes ZK-BFT, a zero-knowledge and Byzantine
fault tolerant consensus algorithm for permissioned blockchains.
The ZKP-based algorithms and the view change protocol are pro-
posed to support the operation of ZK-BFT and provide its privacy-
preservation feature. In theoretical analysis of the proposed ZK-BFT
consensus, we discussed its correctness proof, privacy-preserving
feature, fault tolerance threshold, communication complexity, and
compare ZK-BFT with other typical consensus algorithms. We con-
duct experiments to measure the performance of ZK-BFT, and the
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Figure 6: The relationship between number of exchanged
messages and number of replica nodes from each step in
ZK-BFT view change protocol.

results show that ZK-BFT can provide lower transaction latency
with smaller transaction size in comparison with the existing ZKP
protocols.
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