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Abstract—The non-fungible tokens (NFTs) are unique cryp-
tocurrencies that exist on a blockchain and cannot be repli-
cated. However, today’s NFT market lacks a sensible pricing
framework, which causes NFT price fluctuations to interfere
with the investment market. The purpose of this research
is to build the pricing mechanism for NFT, as it is directly
related to the detailed traits of NFT. The rarity design serves
as the driving force behind the proposed pricing mechanism.
We present a prototype pricing and minting algorithm and
implement it through a smart contract to assess both pricing
accuracy and transaction performance. Our proposed mecha-
nism employs specific parameters and data points related to
NFT features, which could encompass floating-point values due
to our integration of Ether within the regression formula. The
experimental results showed that the rarity score of the features
has a certain degree of impact on the NFT price.

Index Terms—Blockchain, Non-fungible Token, Pricing, Smart
Contract.

1. Introduction

Non-fungible Tokens, often referred to as NFTs, are
tokens based on blockchain, which have proven to be used
in various realms, such as traffic management [1] and the
combination with machine learning [2]. NFTs are unique
and irreplaceable virtual assets that have garnered substantial
attention in recent years, peaking in 2021 [3]. This research
focuses on NFT pricing, exploring its significance in eco-
nomics, markets, and regulations. Several crucial aspects
need consideration in NFT pricing research.

Economics, influenced by supply and demand, is a pri-
mary pricing factor. Variables like the number of partici-
pants, market competition, and potential transaction revenue
contribute to pricing. Artistry is also pivotal, given NFTs’
uniqueness, akin to artwork. Their valuation affects the art
industry, considering digital art market attributes, demand,
regulations, pricing methods, and trends.

Metadata analysis is vital since NFT pricing depends on
data like artist identity, creation date, work details, copyright
info, and traits in this paper. It aids in assessing NFT value
and the impact of these factors on pricing trends. Another
aspect is blockchain tech, which underpins NFT creation,

execution, and value transfer via specialized smart contracts.
Developers often use metadata and value mechanisms for
contract design, demanding clear rules for transaction val-
ues. This convergence of finance and blockchain enhances
Fintech.

The legal aspect in NFT research is crucial due to its sus-
ceptibility to illegal activities like money laundering, further
amplified by price volatility. Compared to traditional art,
NFTs have unique qualities that attract money launderers:
They offer inherent anonymity as cryptographic assets, mak-
ing regulatory oversight challenging. Being digital assets,
NFTs trade online with high liquidity and minimal expenses,
contributing to their appeal. The absence of standardized
pricing mechanisms allows price manipulation, like wash
trading. Existing regulatory frameworks have gaps that can
be exploited. Additionally, the straightforward NFT minting
process facilitates money laundering.

Although there are some researches that examine the
factors that influence the price of NFT [4], [5], [6], [7], few
research combines detailed rarity and smart contract. In this
research, we further explore how rarity factors impact NFT
pricing. Although different collections of NFTs may have
different features for the different smart contracts they are
based on, there might be a similar method to build a function
to express their prices.

Focusing on the characteristics of each NFT, the main
goal of this study is to develop an NFT pricing model that
enhances liquidity for these assets in Decentralized Finance
(DeFi). Our research focuses on capturing the unique value
of each NFT. In summary, this study contributes to:

• We propose a NFT pricing model driven by hedonic
regression. Unlike other studies, our hedonic regres-
sion model is based on the rarity data of NFT traits.

• We design a smart contract that aligns with our
proposed pricing model, encompassing the algorithm
designed to streamline the NFT pricing calculation
and minting into a unified process.

• In the experiments, we first construct and evaluate
the pricing model for real-world NFT datasets. Then,
we implement the smart contract and measure the
transaction performance.
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2. Related Work

In the realm of NFTs, researchers have explored various
perspectives, examining market-side, financial, and sell-side
factors that collectively shape the NFT landscape. Market-
side factors delve into the unique culture of NFT commu-
nities, where consensus on specific NFT collections sparks
discussions in online forums. Twitter, as a widespread in-
ternational platform, is used by NFT project owners to pro-
mote their offerings, potentially influencing NFT valuation.
Kapoor [8], for instance, employed scatter plots and machine
learning algorithms to establish correlations between Twitter
followers and NFT asset values, akin to Luo’s [9] research.

Analysis of financial factors reveals that NFTs, as a
nascent investment instrument, are vulnerable to volatility
from both traditional financial markets and Web3-related
factors. Investigating the relationships between traditional
financial variables and NFT metrics, such as returns [10],
sales volume [11], and NFT attention [12], provides valu-
able insights into NFT pricing dynamics. Christopher [4]
also established a connection between NFT value and the
metaverse using the hedonic model.

On the sell side, factors encompass NFT characteristics
and inter-NFT influences. Rarity assumes a pivotal role, with
scarcer NFTs commanding elevated prices and experiencing
lower transaction frequencies [5], [13]. An intriguing aspect
pertains to the impact of racial colour, wherein figures with
lighter hues tend to command higher prices [6]. Further-
more, certain studies [14] spotlight the cointegration of NFT
submarkets, elucidating how the success of newer projects
reverberates across established markets and vice versa.

In addition to non-technical factors, the design of the
smart contract significantly influences NFT pricing. Initially,
NFTs follow the ERC-721 standard [15] for their creation,
forming the basis for Ethereum’s NFT market. Developers
typically assign an initial NFT price, which can be randomly
selected and may change over time due to market dynamics.
As the NFT market evolves, various ERC standards, such
as ERC-2981 [16], address multi-token transactions, copy-
right issues, and automated NFT pricing by incorporating
royalties based on the original price.

Within the framework of ERC standards, Ethereum en-
courages innovative smart contract and NFT designs, re-
sulting in diverse contract variations. For example, cross-
chain auction protocols offer alternative transactional so-
lutions [17]. However, these variations don’t definitively
establish a consistent NFT valuation, potentially leading to
discrepancies among similar NFTs.

The concept of hedonic regression, proposed by Sherwin
Rosen in ”Hedonic Prices and Implicit Markets: Product
Differentiation in Pure Competition” [18], suggests product
value is a composite of attributes. The hedonic model has
been applied in NFT research [4], [7], [13], [19]. Some NFT
studies employing hedonic models consider meta-universe
factors [4], specific NFT collections [13], or quantity re-
lated to NFT characteristics [7]. However, few delve into
detailed characteristics of specific NFT collections and their
relationship with pricing models.

Machine learning relies on statistical models for com-
puter systems to learn patterns. Researchers aim to uncover
the statistical mechanisms of NFT using machine learning
algorithms [20], [21], [22], [23].

3. Proposed Pricing Mechanism
This section introduces a novel NFT pricing framework.

It utilizes factor analysis to synthesize multiple variables
into composite indicators. We present a rarity-driven model.
To implement this model on the blockchain, we propose the
design of a smart contract to address potential issues.

3.1. Explore Multidimensional Factors

In practical research, data collection is crucial for under-
standing objectives, but it can lead to overlap and excessive
computation. Removing variables may result in data loss.
Factor analysis synthesizes variables into composite indi-
cators (factors), reducing dimensionality while minimizing
data loss.

We assume a random vector Y = (y1,..., yp)′ with an
average of μ, where lp,m represents the loading. yp−μp cen-
tralizes the data, which SPSS handles automatically in our
experiments. When factors are uncorrelated, factor loadings
are the correlation coefficients between the pth feature rarity
and the mth factor. Higher absolute factor loadings indicate
stronger correlations. This model assumes that feature rarity
Y depends linearly on m unobservable common factors F =
(f1,...,fm)′ and p unobservable special factors ε = (ε1,...,εp)′.
The orthogonal factor model is expressed as:

y1 − μ1 = l1,1f1 + l1,2f2 + ...+ l1,mfm + ε1

y2 − μ2 = l2,1f1 + l2,2f2 + ...+ l2,mfm + ε2

...

yp − μp = lp,1f1 + lp,2f2 + ...+ lp,mfm + εp

(1)

In the formula above, coefficient lj,k refers to the loading
of the ith feature rarity on the kth factor, expressing the
characterization of this factor on this feature rarity. If we
use matrix signal, the formula above can be rewritten as
below, in which Lp×m is the loading matrix:

Yp×1 − μp×1 = Lp×m × Fm×1 + εp×1 (2)

In our research, one key concept is and factors’ variance
contribution. It refers to the sum of the square of elements
of the mth column in the factor loading matrix, reflecting
the ability of the mth factor to explain the total variance
of the original variable. The higher this figure is, the more
important the factor is.

S2
m =

w∑

p=1

a2m,p (3)

In a nutshell, the orthogonal factor model is the core of
factor analysis. It can be expressed in two ways. The first
one is a matrix-like model:

Y − μ = LF + ε (4)
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3.2. Rarity-Driven Model for NFT Pricing

In the preceding section, we elucidated the applica-
tion of factor analysis as a sophisticated technique for
the amalgamation of diverse variables. In this section, we
shall commence by examining the conventional iteration of
the hedonic model in NFT pricing. Subsequently, we will
undertake the intricate task of model reconstruction through
the lens of factor analysis.

The hedonic model is used to estimate the impact that
external factors and internal characteristics have on the
prices of assets and properties [24]. Compared to other
research based on the hedonic model, our hedonic model
focuses on NFT features. In our research, the implementa-
tion of the above concept can be expressed as the formula
below:

Pi = a+

J∑

j=1

αjxj,i + ei (5)

where Pi represents the sale price of an NFT, a is the re-

gression intercept,
∑J

j=1 αjxj,i denotes the traits that single
NFT has. xj,i refers to variable j of the ith NFT has. The
coefficient αj reflects the attribution of a relative shadow
price to each of the j characteristics. ei is the difference
between the predictive value and the real value. Equation 8
is the formula of the hedonic model with common factors.

Pi
′ = b+

J∑

j=1

βjyj,i + ui (6)

where Pi
′ represents the sale price of an NFT, b is the

regression intercept. yj,i refers to common factor j of the
ith NFT has. The coefficient βj reflects the attribution of a
relative shadow price to each of the j characteristics. ui is
the difference between the predictive value and real value.

When considering factor analysis, the construction of
the model has a slight alteration. Figure 1 shows Before
and after using factor analysis on hedonic model. Table 1
shows two NFT collections’ features. The rarity of these
features will be selected for the following model fitting.

TABLE 1. FEATURES OF HV-MTL AND SAPPY SEAL

HV-MTL Sappy Seal
Back Attachment Background

Body Body
Companion Extra

Crest Face
Faceplate Head

Head Skin
HV Type N/A

Weapon System N/A

Figure 1. Before and after using factor analysis on hedonic model

3.3. Smart Contract Design

To implement the pricing model in an Ethereum smart
contract, adherence to ERC standards is crucial for NFT
issuance. Additionally, we present Algorithm 1, which seam-
lessly combines NFT pricing and minting processes. This
algorithm takes a token ID and NFT feature data as input
and calculates the NFT’s price using a predefined formula. If
the price is negative, an error is returned, as negative prices
are not allowed. The calculated price and feature data are
stored in an NFTData structure, associating the token ID
with the NFT’s price and features for future reference. The
algorithm also supports NFT minting, allowing the contract
owner to mint a new NFT using the provided token ID and
feature data, typically assigning it to the contract owner.
This comprehensive algorithm streamlines NFT pricing cal-
culation and minting, ensuring accurate pricing and proper
NFT ownership allocation.

In addition to the algorithm mentioned, establishing a
standardized price unit is essential due to Solidity’s integer
operation constraint. Our proposed model involves parame-
ters and NFT data that may include floating-point numbers,
as Ether is used in the regression formula. To enhance
pricing precision, we introduce an encompassing price unit
in our smart contract: GWei (Giga-Wei), with a conversion
rate of 1 Eth = 1 × 109 GWei. Within the contract, the
transactional price unit is in Wei, and when minting NFTs,
GWei is converted to Wei using the relationship 1 GWei =
1× 109 Wei. Parameters and data points in the formula are
appropriately scaled for accuracy. However, it’s important to
note that actual transactions will require JavaScript scripts
to convert GWei to Ether prices, which falls outside the
current research scope. This approach, combined with our
NFT Pricing and Minting algorithm, strengthens our pricing
mechanism’s effectiveness and ensures compatibility with
Solidity’s constraints.

4. Experiments and Evaluation

In this section, we will conduct experiments and analyses
to build and assess our pricing model. We will begin by
selecting NFT datasets, and processing and analyzing them
to determine precise model parameters for a specific NFT
category. Next, we will evaluate the model’s performance
through contract implementation and a comparative study.
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Algorithm 1: NFT Pricing and Minting

Input : Token ID tokenId and NFT features
V1, V2, V3, . . . , Vj

Output: Calculated NFT price and NFT array with
feature values

1 Price ← a+
∑J

j=1 βjVj + e;

2 if Price < 0 then
3 return Error: Price cannot be negative
4 end
5 nftData[tokenId] ←

NFTData(Price, V1, V2, V3, . . . , Vj);
6 return mint(msg.sender, tokenId);

The outcomes of these evaluations will inform our subse-
quent discussions and assessments.

4.1. Data Collection

We collected the data described in this section. The NFT
data is derived from OpenSea, one of the greatest NFT
online markets. The data of 1808 NFTs is from Sappy Seals
and 2153 NFTs is from HV-MTL. Trait rarity data on each
NFT is calculated as:

rarity =
Nf

Nt
(7)

where Nf refers to the number of NFTs having this
feature, and Nt refers to the total number of NFTs in the
collection. For the convenience of data analysis, we multiply
each rarity rate by 100. Before using the hedonic model, we
will first do a linear correlation analysis to get early testing
of the suitability of linear regression for the datasets. In
order to make it more direct, correlation is absolutized:

C1 = abs(C0) (8)

where C1 is the absolutized correlation and C0 is the
original correlation. In Figure 2 and Figure 3, color legends
from left to right indicate an increasing correlation. From
these two graphs, it can be seen that there is some correlation
between the features of HV-MTL, while the correlation be-
tween the features of Sappy Seal is not as strong. Therefore,
the hedonic model, as one of the linear regression models,
is predicted to perform better in HV-MTL.

4.2. Experimental Results

Factor analysis can combine original variables into
shared factors. In our upcoming experiments, we will ex-
plore its potential to improve our model’s outcomes. This
investigation aims to assess factor analysis’s impact on our
model’s performance.

Figure 2. Heatmap of feature correlations in the HV-MTL dataset.

Figure 3. Heatmap of feature correlations in the Sappy Seal dataset.

4.2.1. Data Pre-processing. Since different indicators have
different quantitative outlines and may not be comparable,
it is necessary to standardize the raw data to eliminate the
effect of quantitative outlines. The standardization formula
is as follows, in which Xi is the original data and Zi is the
standardized data:

Zi = Xi − μ (9)

4.2.2. Adaptive Analysis. Before factor analysis, it’s essen-
tial to ensure enough correlation among the original vari-
ables, a prerequisite for the analysis. Bartlett’s and Kaiser-
Meyer-Olkin (KMO) tests assess this. If the p-value is less
than a, the original variables are suitable for factor analysis.

The KMO test, ranging from 0 to 1, measures variable
correlation. Values closer to 1 indicate a stronger correlation,
making data more suitable for factor analysis. When KMO
¿ 0.6 and Bartlett’s test is significant [25], data is fit for
factor analysis. Table 2 confirms both datasets’ suitability.

TABLE 2. ADAPTIVE ANALYSIS OF TWO DATASETS

HV-MTL Sappy Seal
KMO 0.731 0.635

Significant 0.000 0.000
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4.2.3. Number of Common Factors. In order to determine
the number of common factors, it is important to observe
the result of the total variance. The calculation of the total
variance is below:

• Assume S2
1 , S2

2 , ..., S2
p are p common factor vari-

ance;
• The first variance is C1 = S2

1 / p
• The accumulative variance contribution of the first

k common factors are Ck =
∑k

i=1 S2
i / p

The higher the accumulative variance is, the better com-
mon factors can explain the original variables. Generally,
85% is a critical value. As such, according to Figure 4, we
can select four common factors in both datasets.

4.2.4. Regression Result. This study aims to evaluate the
proposed pricing model within a smart contract. We require
data from previous datasets to derive a regression formula.
After reviewing Table 3 and analyzing regression results,
the HV-MTL result is chosen as the ideal candidate. The
formula is as follows:

p =3.638 + 0.206x1 − 1.202x2 − 0.007x3

− 0.322x4 + 0.208x5 − 2.035x6

− 0.116x7 + 0.143x8 (p > 0)

(10)

4.3. Comparison Analysis

We employ the hedonic model to predict NFT prices,
with a focus on rarity. Table 4 shows the performance of
the hedonic model. The data in Table 4 indicates that the
hedonic model can explain over 25% of the HV-MTL dataset
variation. Notably, after incorporating common factors, the
model demonstrates improvements compared to its initial
state. This improvement is evident in the increase of the
R2 value from 0.251 to 0.27, and a decrease in the Mean
Absolute Error (MAE) from 0.535 to 0.518.

We also applied the Sappy Seal dataset to our experi-
ment. Table 4 indicates that the introduction of common fac-
tors has a slightly negative impact on the results in this case.
It worsens the model fit across all indices. Therefore, the
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Figure 4. The total variance of growing components in the HV-MTL and
Sappy Seal datasets.

TABLE 3. REGRESSION RESULT OF HV-MTL AND SAPPY SEAL

Dependent
Variable of
HV-MTL

Dependent
Variable of
Sappy Seal

Constant 3.638 2.032
Feature 1 0.206 0.015
Feature 2 -1.202 -0.01
Feature 3 -0.007 -0.015
Feature 4 -0.322 -0.001
Feature 5 0.208 -0.01
Feature 6 -2.035 -0.005
Feature 7 -0.116 N/A
Feature 8 0.143 N/A

performance differences between the HV-MTL and Sappy
Seal datasets suggest that the application of factor analysis
is likely to yield positive effects on the model when there
is a high correlation between variables. However, caution is
needed when considering its implementation in cases where
such a high correlation is absent.

4.4. Contract Implementation and Cost Analysis

Based on the contract design and Formula (12) from
the selected dataset, we specify parameter values to ensure
contract integrity. To address the issue of excessive NFT
feature storage, we introduce an internal price computation
function. This function reduces the proliferation of local
variables and effectively manages over-stacking by returning
the calculated price to the original calculation function.

The modified contract is tested in Remix, the Ethereum
Integrated Development Environment, primarily to evaluate
contract deployment and NFT minting expenses. We focus
on testing the mintNFT function in line with our research
objectives. Leveraging the existing design of the internal
calculation function helps pinpoint transaction costs to the
mintNFT function since it invokes the calculation function.

Experimental results in Figure 5 indicate reasonable gas
costs for NFT minting transactions. The higher contract
deployment cost is justified as it involves interaction with the
entire blockchain network, not just individual blocks. The
successful execution of this contract in Remix demonstrates
its suitability for deployment on the blockchain. Further
enhancements by developers can enhance its security and
functionality for pricing NFTs in various conditions.

5. Conclusion

This paper introduces a novel mechanism for pricing
NFTs based on the rarity scores of features within a specific
NFT collection. Grounded in the hedonic model frame-
work and drawing inspiration from various NFT collections,
our pricing model utilizes regression outcomes to create
a corresponding contract. The successful execution of this
contract demonstrates its potential as an alternative pricing
solution, contributing to the standardization of NFT prices.
We also conducted a comparative evaluation of our model,
highlighting the role of factor analysis. Our future research
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TABLE 4. HEDONIC MODEL PERFORMANCE

HV-MTL

HV-
MTL
with

Common
Factors

Sappy Seal

Sappy
Seal
with

Common
Factors

R2 0.251 0.27 0.487 0.46
MAE 0.535 0.518 0.056 0.067
MSE 2.149 1.076 0.02 0.021

RMSE 1.466 1.037 0.141 0.144
MSD -0.014 0.064 0.006 0.002

MAPE 0.254 0.244 0.094 0.122
Adjusted

R2 0.251 0.27 0.487 0.46

1 2 3 4 5 6
Operations

0

1

2

3

C
os

t i
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em

ix
 (g

as
)

106

Contract Deployment
Transactions

Figure 5. The gas cost associated with the proposed smart contract deploy-
ment and transactions in Remix.

will focus on expanding and improving the model’s scope
and applicability to address these challenges.
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