
FSCO: A Secure and Adaptive Framework for
Supply Chain Optimization

Tianyou Wang1 Xing Fan2 Wanxin Li1∗ Hao Guo3∗ Jie Zhang1∗
1School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou, China

2 School of Business, Hohai University, Nanjing, China
3School of Software, Northwestern Polytechnical University, Xi’an, China

tianyou.wang23@student.xjtu.edu.cn, 221813060004@hhu.edu.cn
wanxin.li@xjtlu.edu.cn, haoguo@nwpu.edu.cn, jie.zhang01@xjtlu.edu.cn

Abstract—With the rapid growth of the e-commerce industry,
the demands on logistics and transportation for timeliness and
efficiency are increasing. Traditional route optimization methods
may struggle with real-time traffic, configuration, and network
changes, requiring more adaptive solutions. This paper proposes
a novel route optimization methodology, FSCO, integrating
genetic algorithms, KMeans clustering, artificial intelligence algo-
rithms, federated learning, and blockchain technology. Genetic al-
gorithms provide a comprehensive exploration of search spaces to
identify cost-effective routes. KMeans clustering optimizes route
selection by analyzing traffic data, allowing the system to adapt
to real-time changes. Artificial intelligence algorithms enhance
responsiveness through real-time predictions and adjustments.
Federated learning enables multiple nodes to collectively optimize
the dataset while preserving privacy, achieving complete data
decentralization. Blockchain technology ensures data security
through immutability and transparency, preventing disruptions
and unauthorized manipulations. This paper details the system
architecture and its operational mechanisms, highlighting key
aspects and advantages, and demonstrating significant potential
in addressing dynamic route adaptation, data privacy, and
information security in logistics.

Index Terms—genetic algorithms, KMeans clustering, federated
learning, blockchain

I. INTRODCTION

With the advancement of society, we have entered the
internet era where large B2C e-commerce platforms like Ama-
zon and Walmart are becoming increasingly comprehensive.
Events such as Amazon Prime Day and Black Friday have
gained immense popularity worldwide [1]. In daily consump-
tion, people experience the convenience and benefits of online
shopping anytime, anywhere, leading to increased trust in
online platforms. As a result, the scale of online shopping
transactions has expanded rapidly across the globe. According
to data from Statista, the global e-commerce market witnessed
significant growth in 2020, with online retail sales reaching
4.28 trillion US dollars, marking a 27.6% increase from
the previous year. This trend was further accelerated by the
pandemic, with e-commerce’s share of total global retail sales
rising to 18%. By the first quarter of 2021, Amazon’s net sales
had surged by 44% year-over-year, reflecting the continued
global growth and dominance of online shopping platforms
like Amazon and Walmart.

According to the Council of Logistics Management [2],
“Logistics encompasses the planning, implementation, and

control of the flow and storage of goods, services, and related
information from origin to consumption to meet customer
requirements within the supply chain process.” A critical
objective in supply chain management (SCM) is to develop
network flow models that not only minimize costs but also
integrate sustainability and address social considerations. In
SCM, the efficient determination of the shortest path between
nodes is crucial across various operational scenarios. Whether
it’s optimizing product delivery routes between locations, solv-
ing inventory decisions within network structures, or tackling
scheduling complexities, the shortest path plays a fundamental
role. Beyond cost reduction, these optimized paths contribute
significantly to environmental sustainability by lowering car-
bon dioxide [3], [4].

Utilizing multi-echelon networks to mitigate inventory
shortages, the adoption of e-commerce strategies aiming to
meet consumer demands for faster delivery times and ex-
panded product choices has inadvertently reduced network
resilience and increased susceptibility to disruptions driven by
supply and demand fluctuations. While third-party logistics
providers can efficiently support last-mile delivery operations
in less complex supply chains, larger enterprises managing
multi-echelon networks require sophisticated digital solutions
and streamlined supply chain processes to effectively han-
dle logistical complexities. Introduced by Accenture in the
1990s, fourth-party logistics providers enable companies to
concentrate on developing value-added products by offering
comprehensive logistical operations encompassing order and
supplier management, as well as ensuring compliance with
legal requirements [5]. Moreover, fourth-party logistics part-
nerships can integrate third-party logistic services strategically
to optimize resource flow through efficient logistics planning
and scheduling, thus minimizing costs and ensuring punctual
deliveries.

Building on this foundation, this paper conceptualizes an
innovative route optimization paradigm that integrates feder-
ated learning, blockchain technology, and genetic algorithms
to address the limitations of conventional systems. Federated
learning offers a decentralized approach to machine learning,
enabling multiple logistics nodes to collaboratively develop
and enhance route optimization models while keeping their
data localized. This approach significantly enhances privacy

522

2025 the 10th International Conference on Cloud Computing and Big Data Analytics

979-8-3315-3080-8/25/$31.00 ©2025 IEEE

20
25

 1
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

an
d

Bi
g

Da
ta

 A
na

ly
tic

s (
IC

CC
BD

A)
 |

 9
79

-8
-3

31
5-

30
80

-8
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CC
BD

A6
48

98
.2

02
5.

11
03

04
80

Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

and data security. Incorporating blockchain technology adds
a layer of security and transparency by establishing an im-
mutable blockchain ledger that records all transactions and
operational data within the enterprise. This ledger cannot be
altered, hacked, tampered with, or accessed without authoriza-
tion, ensuring data integrity and trust.

The genetic algorithm effectively navigates the complex so-
lution space of trucking routes, providing a robust framework
for exploring efficient paths that account for traffic conditions,
mandated delivery times, and other logistical constraints. This
combination addresses the intricate and dynamic challenges of
the modern logistics market while aligning with the company’s
goal of making more informed decisions. This paper offers
valuable insights into developing advanced logistics and trans-
portation systems by detailing the design and implementation
of this route optimization framework.

This study delves into the advanced applications of genetic
algorithms, KMeans clustering, artificial intelligence algo-
rithms, federated learning, and blockchain technology to im-
prove delivery and supply chain processes. Our contributions
focus on three primary aspects, with a particular emphasis on
ensuring security and privacy in path optimization:

• We propose an integrated approach that combines fed-
erated learning and blockchain technology, driven by
genetic algorithms. This model exhibits qualities such as
viability, adaptability, and efficiency crucial for dynamic
supply chain management. It enables rapid adjustments
in real-time supply line paths to accommodate data fluc-
tuations and unexpected events, thereby optimizing the
flow of goods and communication.

• Our theoretical exploration introduces a pioneering
methodology where genetic algorithms are embedded
within a federated learning framework, fortified by
blockchain technology to ensure security. These enhance-
ments bolster data security and privacy, ensuring that
each system interaction and transaction is securely and
immutably recorded, validated, and permanently added
to the blockchain. This framework promotes trust and
transparency in logistics operations.

• We address contemporary flaws in logistics and sup-
ply chain management through an integrative approach.
Leveraging the Hyperledger platform as a foundation for
blockchain infrastructure, we conduct rigorous perfor-
mance benchmarking to evaluate the model’s efficiency,
fault tolerance, and flexibility. These benchmarks validate
the practical applicability of our approach, setting new
standards for path optimization in logistics while priori-
tizing the highest levels of privacy protection for system
users.

II. RELATED WORK

The Dijkstra algorithm and its variants have been predom-
inantly utilized in the literature to determine optimal routes.
Originally designed to solve the shortest path problem, the
Dijkstra algorithm has seen modifications to its cost function

to incorporate safety in route-finding. Byon et al. [6] en-
hanced the Dijkstra algorithm by integrating safety parameters
such as crime rate, road slope, scenic view, and ground
surface elevation into the cost functions. Another method
for identifying the safest route involves ranking the shortest
path and its alternatives based on safety criteria [7], [8].
However, traditional Dijkstra-based methods are limited by
their static nature, relying heavily on predefined parameters
and struggling to adapt to dynamic environments. Building on
these limitations, our framework incorporates real-time data
adaptability and privacy-preserving features through federated
learning and blockchain technologies.

Additionally, machine learning (ML) techniques can be
leveraged not only to generate safety metrics but also to
predict the safest routes. Among the ML-based approaches,
deep reinforcement learning has been prominently used to
determine the shortest and safest paths [9]. While ML ap-
proaches improve adaptability and prediction accuracy, they
often face challenges in data privacy and scalability when
applied across distributed nodes. To address these issues, we
propose an integration of ML models with federated learning
to ensure privacy-preserving training while enhancing global
model performance.

Route-finding algorithms can be broadly categorized into re-
active and predictive types based on their operational approach
[10]. Reactive algorithms [10] determine paths using real-time
observed data, without relying on predictions of future condi-
tions. In contrast, predictive algorithms [11] utilize models to
forecast future route conditions, allowing for more informed
and anticipatory decision-making. Our approach dynamically
integrates real-time updates into predictive models, ensuring
both adaptability and forward-looking decision-making [12].

Route-finding algorithms can be categorized into two main
types: static and dynamic, based on their ability to incorporate
real-time information. Moreover, the datasets utilized by static
algorithms differ from those used by dynamic algorithms.
These datasets are sourced from platforms such as Open-
StreetMap, Bing Maps, and Google Maps [9], [13]. In addition
to geographic information, static algorithms also utilize histor-
ical data for safety assessments. For instance, studies related to
crime risk in static algorithms use historical crime records. On
the other hand, dynamic algorithms incorporate real-time data
[14], [15]. Various sources of real-time datasets mentioned in
the literature include news websites, official reports, and GPS
data. Route-finding algorithms can also be classified based on
their objectives. In decentralized algorithms, decision-making
is handled by individual users, which allows the system to
optimize for each user’s specific benefits.

The logistics and transportation industry is a critical link
in the economic cycle, promoting efficient integration from
production to sales, and plays a decisive role in transforming
economic growth models and optimizing industrial structures.
The Vehicle Routing Problem (VRP), as one of the key issues
in logistics system optimization, can be studied in depth to
improve transportation efficiency and reduce costs effectively.
VRP and its variations aim to design a route that minimizes

523
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

costs when delivering to a geographically dispersed group of
customers, thereby enhancing transportation and distribution
efficiency [16]. Elgharably et al. [17], through their research
on the stochastic multi-objective VRP in a green environ-
ment, proposed a hybrid multi-objective search algorithm to
address this problem and analyzed the potential impact of
relaxing customer time windows. Hulagu et al. [18] proposed
an electric vehicle routing optimization method based on a
mixed-integer programming model, which considers the road
network, passenger demand, and vehicle characteristics to min-
imize operational and charging costs. Jia et al. [19] introduced
a bi-level ant colony optimization (BACO) algorithm for the
capacitated electric VRP (CEVRP), which breaks down the
problem into two subproblems: the capacitated VRP (CVRP)
and the fixed-route vehicle charging problem (FRVCP). By
coordinating the optimization of these two subproblems, the
algorithm’s performance in finding solutions is enhanced.
Stodola et al. [20] proposed a metaheuristic algorithm based on
ant colony optimization principles, incorporating techniques
such as node clustering and adaptive pheromone evaporation
to tackle the multi-depot VRP (MDVRP). The methods for
solving VRPTW are mainly divided into traditional exact
algorithms and heuristic algorithms. Exact algorithms solve
VRPTW by obtaining an optimal solution through local cal-
culations, but they are computationally complex and costly.
Heuristic algorithms solve VRPTW by extensively exploring
the feasible solution space to find an optimal solution, and
have now become the mainstream approach for VRPTW [21],
[22].Our framework addresses these gaps by integrating feder-
ated learning for decentralized data optimization, blockchain
for secure and transparent data storage, and advanced genetic
algorithms for efficient route selection.

III. PREMILINARY

A. Genetic Algorithm

Genetic algorithms (GAs) are search heuristics inspired
by natural selection, used to solve optimization and search
problems through evolution. Key components include:

• Population: A set of candidate solutions, or individuals,
each encoding a potential solution to the optimization
problem.

• Fitness Function: Evaluates each individual’s quality,
guiding selection. A fitness function f(x) can be rep-
resented as:

f(x) = objective function to be optimized

• Selection: Determines which individuals contribute to the
next generation, with probability expressed as:

P (i) =
f(i)∑N
j=1 f(j)

• Crossover: Combines genetic material from two parents
to create offspring. For one-point crossover:

Offspring1 = Parent1[0 : c] + Parent2[c : N]

• Mutation: Introduces random changes to maintain ge-
netic diversity, defined as:

Mutated Gene =

{
New Value withp
Original Value with1− p

• Termination Criteria: The algorithm stops based on
criteria such as a maximum number of generations Gmax
or a satisfactory fitness level f∗.

B. KMeans Clustering

KMeans is a widely used clustering algorithm designed to
partition a dataset into K clusters, where each data point is
assigned to the cluster with the nearest mean. The algorithm
is characterized by the following steps:

1) Initialization: Randomly select K initial cluster cen-
troids {µ1, µ2, . . . , µK}.

2) Assignment: For each data point xi, assign it to the
nearest cluster centroid µj :

C(i) = argmin
j
∥xi − µj∥2

where C(i) is the cluster index assigned to point xi and
∥ · ∥ denotes the Euclidean distance.

3) Update: Calculate the new centroids as the mean of the
data points in each cluster:

µj =
1

|Sj |
∑

xi∈Sj

xi

where Sj is the set of points assigned to cluster j.
4) Repeat: Continue repeating the assignment and update

steps until the centroids stabilize, i.e., the change in
centroids is less than a threshold ϵ:

∥µ(new)
j − µ

(old)
j ∥ < ϵ

C. Neural Network

Neural networks are a class of machine-learning models
inspired by the human brain. They consist of layers of neurons
that process input features and learn complex patterns through
training.

The structure of a neural network typically includes:

1) Input Layer: Receives the input features x =
[x1, x2, . . . , xn].

2) Hidden Layers: Intermediate layers that transform the
input features through learned weights W and activation
functions f . The output of a hidden neuron hj can be
expressed as:

hj = f

(∑
i

wjixi + bj

)

where wji is the weight from input i to neuron j, and
bj is the bias term.

524
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

3) Output Layer: Produces the final output, such as a
classification or regression result. For a single output
neuron, this can be expressed as:

y = f

∑
j

wojhj + bo

where woj are the weights from the hidden layer to the
output neuron, and bo is the output bias.

D. Federated Learning

Federated learning is a distributed machine learning ap-
proach that allows multiple clients to collaboratively train a
model while keeping their data decentralized.

The process includes:
1) Local Training: Each client i trains a local model Mi

on its own data Di:

Mi ← Train(Mi, Di)

2) Model Aggregation: The updates from the local models,
denoted as ∆Mi, are sent to a central server. The server
aggregates these updates to create the updated global
model M :

M ←M +
1

N

N∑
i=1

∆Mi

where N is the number of clients.
3) Global Model Update: The updated global model M

is sent back to the clients for the next round of training:

M ← Update(M)

E. Blockchain

Blockchain is a decentralized ledger technology that ensures
data integrity and security through a distributed network of
nodes.

The key components include:
1) Blocks: Data records grouped in blocks.
2) Chain: Blocks are linked together in a chronological

chain using cryptographic hashes.
3) Consensus Mechanisms: Methods like Proof of Work

(PoW) or Proof of Stake (PoS) that ensure agreement
on the blockchain state across the network.

Blockchain provides transparency, immutability, and secu-
rity, making it suitable for applications requiring robust data
integrity.

F. Dynamic Simulation

Dynamic simulation involves adjusting system parameters
or behaviors in response to real-time environmental changes,
such as traffic flow.

The process includes:
1) Real-time Simulation: Use a scheduler to dynamically

simulate changes in path weights to reflect real-time
factors.

2) Fitness Score Modification: Periodically modify fitness
scores in a CSV file using the modify fitness score()
function.

3) Process Initiation: Regularly start federated learning
and optimization processes using the start process()
function.

IV. FSCO DESIGN

The Fig. 1 illustrates the FSCO system’s overall design,
integrating genetic algorithms, KMeans clustering, neural net-
works, and federated learning. Each client independently pro-
cesses data using genetic algorithms and KMeans clustering
to identify optimal paths. A neural network calculates the
fitness scores, and results are combined via federated learning,
ensuring data privacy. Dynamic simulation keeps the system
adaptive to real-world changes. Additionally, blockchain tech-
nology secures the integrity of the optimized paths, facilitating
transparent auditing, smart contract execution, and ensuring
accountability and efficiency in supply chain management.

The FSCO system integrates several advanced technolo-
gies to optimize supply chain management. First, genetic
algorithms in Subsec. IV-A are employed at each client to
find the most suitable paths within their respective datasets.
These paths are then clustered using KMeans clustering in
Subsec. IV-B, enhancing the management and optimization of
the routes.

Subsequently, the paths’ fitness scores are calculated using
a pretrained neural network model in Subsec. IV-C, ensuring
each path’s efficacy. The results of multiple rounds of genetic
algorithm searches are aggregated into a global model through
federated learning in Subsec. IV-D, which allows the system to
incorporate optimized routes from all clients while preserving
data privacy.

To mimic real-world dynamics, the system periodically
updates the fitness scores of each client and adjusts the
paths in real time, using dynamic simulation techniques in
Subsec. IV-E. This ongoing process ensures that the FSCO
system adapts to data fluctuations and unexpected events,

Fig. 1. The optimal paths derived from the genetic algorithm are clustered by
KMeans clustering, and then scores are computed with a pre-trained neural
network, which are aggregated to the global model by federated learning.

525
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

maintaining optimal performance and decision-making capa-
bilities securely and efficiently.

The FSCO system incorporates blockchain technology in
Subsec. IV-F to securely store optimized paths identified
through genetic algorithms and KMeans clustering. By lever-
aging blockchain, the system ensures the integrity and trans-
parency of route data, enhancing trust and reliability across
the supply chain. This approach enables immutable records
of route optimizations, facilitating transparent auditing and
automated smart contract execution for performance-based
incentives, thereby enhancing operational efficiency and ac-
countability in supply chain management.

As shown in Fig. 2, the workflow begins with each client
independently processing its data using Genetic Algorithms
(1) and K-Means clustering (2) to identify optimal paths
within their datasets. Following this, a Neural Network (3)
calculates fitness scores for these paths, ensuring effective
solution selection. These evaluations lead to an Optimized
Path (4), representing refined solutions. Blockchain (5) is
then employed to secure the integrity and transparency of
the optimization process, enhancing trust across the system.
Federated Learning (6) aggregates the results into a global
model, preserving data privacy while consolidating insights
from all clients. Finally, Dynamic Simulation (7) enables
real-time adaptation to environmental changes, ensuring the
system remains responsive and reliable under fluctuating con-
ditions.

Invocation GA KM Path

1
2

3

NN

4

OP

5
6

BC

7

FL DS

8
9

Fig. 2. GA - Genetic Algorithm, KM - K-Means, NN - Neural Network, OP
- optimized path, NN - Neural Network, FL - Federated Learning, and DS -
Dynamic Simulation.

A. Genetic Algorithm (Algo. 1 and Algo. 2)

Lines 1-2: These variables set up the foundational settings
for the genetic algorithm, including the total population gene
limits, gene range, genes per individual, population size,
termination condition, and scaling factor. Lines 3-11: This
procedure initializes the population by randomly selecting
genes from generange to form individuals. It randomly
samples total_numbers genes from generange to create
pop_size individuals and returns the population (list of
individuals) and humanGene (list of genes). Lines 12-15:
Calculates the fitness of an individual based on its path
optimization quality. The fitness evaluation considers multiple
real-world factors such as distance, cost, and time,
which are crucial for practical path optimization problems.

Algorithm 1 Genetic Algorithm for Path Optimization
1: Parameters:
2: total numbers, generange, selected numbers, pop size, terminder, N
3: procedure GENERATE POPULATION
4: humanGene ← random.sample(range(generange), total numbers)
5: population ← ∅
6: for each individual in pop size do
7: individual ← random.sample(humanGene, selected numbers)
8: population.append(individual)
9: end for

10: return population, humanGene
11: end procedure
12: procedure FITNESS(individual, humanGene)
13: distance, cost, time, penalty ← calculate metrics(individual)
14: return 1/(w1 · distance+ w2 · cost+ w3 · time+ penalty)
15: end procedure
16: procedure SELECTION(population, fitness values)
17: return random.choices(population, fitness values, total numbers)
18: end procedure
19: procedure GENETIC ALGORITHM
20: population, humanGene ← GENERATE POPULATION
21: while termination condition not met do
22: fitness values ← [FITNESS(ind, humanGene) for ind in popula-

tion]
23: selected population ← SELECTION(population, fitness values)
24: next generation ← ∅
25: for each pair in selected population do
26: child1, child2 ← ENHANCED CROSSOVER(pair[0], pair[1])
27: GUIDED MUTATE(child1, humanGene)
28: GUIDED MUTATE(child2, humanGene)
29: next generation.extend([child1, child2])
30: end for
31: population ← next generation
32: end while
33: return population
34: end procedure

A penalty term is introduced to handle undesirable solutions,
making the algorithm more robust and adaptive. Lines 17-18:
Selects individuals from the population based on their fitness
values. It uses random.choices to probabilistically select
individuals, favoring those with higher fitness values. Lines 19-
34: The main procedure of the genetic algorithm. It iteratively
generates improved populations. In each iteration, it calculates
fitness values, selects individuals, and produces offspring using
enhanced crossover and guided mutation operations. Finally,
it returns the optimized population.

As shown in Algo. 2, the enhanced_crossover pro-
cedure uses a uniform crossover mechanism. For each gene,
it selects the genetic material from either parent with a
50% probability, ensuring better diversity in the offspring
(Lines 1-13). Lines 14-22: The guided_mutate procedure
introduces an adaptive mutation rate to prevent premature
convergence. The mutation operation is guided by a heuristic
that incorporates knowledge of the fitness function, such as
optimizing distance, cost, or time, to produce beneficial
changes in the individual.

B. KMeans Clustering (Algo. 3)

The KMeans clustering algorithm described in Algo. 3
groups paths into K clusters for path optimization. The
algorithm starts with the initialization of input parameters,
including K, the number of clusters, and max_iterations,
the maximum number of iterations allowed for convergence

526
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Enhanced Crossover and Mutation Operations
1: procedure ENHANCED CROSSOVER(parent1, parent2)
2: child1, child2 ← ∅,∅
3: for each gene index i in parent1 do
4: if random.random() < 0.5 then
5: child1[i] ← parent1[i]
6: child2[i] ← parent2[i]
7: else
8: child1[i] ← parent2[i]
9: child2[i] ← parent1[i]

10: end if
11: end for
12: return child1, child2
13: end procedure
14: procedure GUIDED MUTATE(individual, humanGene)
15: mutation rate ← adaptive mutation rate(population) ▷ Adaptive rate
16: for each gene in individual do
17: if random.random() < mutation rate then
18: gene ← heuristic mutation(gene, humanGene)
19: end if
20: end for
21: return individual
22: end procedure

(Lines 1-3). The procedure KMeans_clustering is de-
fined to take the list of paths and the number of clusters
K as inputs (Line 4). Initial centroids are determined using
the initialize_centroids function, which randomly
selects K paths from the dataset (Line 5).The main iterative
process begins in Line 6 and continues until either conver-
gence is achieved or the maximum number of iterations is
reached. At the start of each iteration, an empty array of
lists, clusters, is initialized to store paths assigned to
each cluster (Line 7). For each path, the algorithm identifies
the nearest centroid using the find_nearest_centroid
function (Line 9) and assigns the path to the correspond-
ing cluster (Line 10). After all paths are assigned, the
centroids are updated based on the mean of the paths in
each cluster using the update_centroids function (Line
12). The algorithm then checks for convergence using the
convergence_reached function, which compares the old
centroids with the updated centroids. If convergence is de-
tected, the loop terminates early (Lines 13-15). If not, the
centroids are updated to the newly calculated values for the
next iteration (Line 16).

C. Genetic Algorithm with Neural Network for Fitness Score
Calculation (Algo. 4)

Lines 1 to 5: These lines define the parameters required for
setting up the neural network model: input size, hidden sizes,
output size, and dropout rate. These parameters determine
the architecture and behavior of the neural network. Lines 6
to 19: The DeepPathNet procedure constructs a deep neural
network model tailored for path cost prediction. It initializes
a sequential stack of layers comprising linear transformations,
rectified linear unit (ReLU) activations for non-linearity, and
dropout layers to prevent overfitting. The model architec-
ture is defined based on the provided parameters input size,
hidden sizes, output size, and dropout rate. Lines 20 to 29:
The train on client procedure iterates through a specified

Algorithm 3 KMeans Clustering for Path Optimization
1: Parameters:
2: K ▷ {Number of clusters}
3: max iterations ▷ {Maximum number of iterations}
4: procedure KMEANS CLUSTERING(paths, K) ▷ {Cluster the paths into

K clusters}
5: centroids ← initialize centroids(paths, K) ▷ {Initialize K centroids}
6: for iteration in max iterations do
7: clusters ← array of empty lists ▷ {Initialize clusters}
8: for each path in paths do
9: nearest centroid ← find nearest centroid(path, centroids) ▷
{Find the nearest centroid for each path}

10: clusters[nearest centroid].append(path) ▷ {Assign path to the
nearest centroid’s cluster}

11: end for
12: new centroids ← update centroids(clusters) ▷ {Update centroids

based on the mean of assigned paths}
13: if convergence reached(centroids, new centroids) then ▷
{Check if centroids have converged}

14: break
15: end if
16: centroids ← new centroids ▷ {Set centroids to new centroids}
17: end for
18: return clusters, centroids
19: end procedure

number of epochs to train the neural network model on given
data and targets. It performs forward propagation to generate
predictions, computes the loss between predicted and actual
targets using a specified criterion, computes gradients using
backpropagation, and updates the model parameters using the
optimizer. Lines 30 to 34: The compute fitness calculates the
fitness of a path using the trained neural network model. It
extracts relevant features from the path, predicts the path’s cost
using the neural network model, and computes the fitness score
as 1/(predictedcost + 1). This fitness score quantifies the
path’s suitability based on predicted cost. Lines 35 to 45: The
integrate with GA and KMeans integrates the genetic algo-
rithm (GA), KMeans clustering, and the neural network model
for path optimization. It initializes paths and genetic material
using GA, clusters paths into groups using KMeans, trains
separate neural network models on each cluster to predict
path costs, and updates fitness scores based on the predicted
costs. This integration optimizes paths across multiple clients’
datasets, reflecting dynamic changes over time.

D. Federated Learning for FSCO (Algo. 5)

Line 1-6: The algorithm initializes parameters necessary for
federated learning, specifying details like the list of clients
with their datasets, the global neural network model to be
updated, the number of rounds for federated learning, the
number of training epochs per round, the optimizer used for
model training, and the loss criterion for model training. Line
8-20: Within each round of federated learning, every client
independently trains a local copy of a shared neural network
model using its own data. After training, each client evaluates
the trained model’s performance on its respective dataset,
updates its internal evaluation score, and then communicates
its updated model parameters to a central server or aggregator.
Line 21-30: The compute fitness function computes fitness
scores for each path in a given set of paths using a trained

527
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 Neural Network Model for Path Cost Prediction
1: Parameters:
2: input size ▷ {Number of input features}
3: hidden sizes ▷ {List of neurons in each hidden layer}
4: output size ▷ {Number of output features}
5: dropout rate ▷ {Dropout rate for preventing overfitting}
6: procedure DEEPPATHNET(input size, hidden sizes, output size,

dropout rate)
7: layers ← ∅
8: layers.append(Linear(input size, hidden sizes[0]))
9: layers.append(ReLU())

10: for each hidden size in hidden sizes[1:] do
11: layers.append(Linear(previous hidden size, hidden size))
12: layers.append(ReLU())
13: layers.append(Dropout(dropout rate))
14: previous hidden size ← hidden size
15: end for
16: layers.append(Linear(hidden sizes[-1], output size))
17: model ← Sequential(layers)
18: return model
19: end procedure
20: procedure TRAIN ON CLIENT(model, data, targets, optimizer, criterion,

epochs)
21: for each epoch in epochs do
22: optimizer.zero grad()
23: outputs ← model(data)
24: loss ← criterion(outputs, targets)
25: loss.backward()
26: optimizer.step()
27: end for
28: return model
29: end procedure
30: procedure COMPUTE FITNESS(path, model)
31: input features← extract features(path) ▷ {Extract relevant features}
32: predicted cost ← model(input features) ▷ {Predict cost using the

model}
33: return 1 / (predicted cost + 1) ▷ {Calculate fitness}
34: end procedure
35: procedure INTEGRATE WITH GA AND KMEANS
36: paths, humanGene ← GA.generate initial population()
37: clusters, centroids ← KMeans clustering(paths, K)
38: for each cluster in clusters do
39: model ← DeepPathNet(input size, hidden sizes, output size,

dropout rate)
40: cluster data ← concatenate paths(cluster)
41: cluster targets ← compute targets(cluster)
42: trained model ← train on client(model, cluster data, clus-

ter targets, optimizer, criterion, epochs)
43: update fitness scores(cluster, trained model)
44: end for
45: end procedure

model. This score is derived from the model’s predictions on
extracted features from each path, calculated as the inverse of
the predicted cost plus one. Line 31-41: The aggregate models
function consolidates models from all participating clients to
update a global neural network model. It computes new model
parameters by averaging the parameters of all client models,
ensuring that each client’s contribution is weighted equally in
the model aggregation process.

E. Dynamic Simulation with Federated Learning (Algo. 6)

Lines 1-5: The algorithm initializes a dynamic simulation
process for federated learning clients. Parameters are defined:
clients: List of clients participating in federated learning.
simulation duration: Total duration of the dynamic simulation
in time steps. Lines 6-19: dynamic simulation procedure: It

Algorithm 5 Federated Learning
1: Parameters:
2: clients ▷ List of clients with their respective datasets
3: global model ▷ Global neural network model to be updated
4: rounds ▷ Number of federated learning rounds
5: epochs per round ▷ Number of training epochs per round
6: optimizer ▷ Optimizer for model training
7: criterion ▷ Loss criterion for model training
8: procedure FEDERATED LEARNING(clients, global model, rounds,

epochs per round, optimizer, criterion)
9: for round ← 1 to rounds do

10: for each client ∈ clients do
11: local model ← clone(global model)
12: data, targets ← client.get data()
13: trained model ← train on client(local model, data, targets,

optimizer, criterion, epochs per round)
14: client fitness ← compute fitness(client.paths, trained model)
15: client.update fitness score(client fitness)
16: end for
17: global model ← aggregate models(clients, global model)
18: end for
19: return global model
20: end procedure
21: procedure COMPUTE FITNESS(paths, model)
22: fitness scores ← []
23: for each path ∈ paths do
24: input features ← extract features(path)
25: predicted cost ← model(input features)
26: fitness score ← 1 / (predicted cost + 1)
27: fitness scores.append(fitness score)
28: end for
29: return fitness scores
30: end procedure
31: procedure AGGREGATE MODELS(clients, global model)
32: aggregated model ← clone(global model)
33: for each parameter in global model.parameters do
34: parameter sum ← 0
35: for each client ∈ clients do
36: parameter sum ← parameter sum + client.model.parameter
37: end for
38: aggregated model.parameter ← parameter sum / len(clients)
39: end for
40: return aggregated model
41: end procedure

simulates the dynamic behavior where each client updates
its fitness score periodically based on a predefined interval
(update interval). During each update, clients adjust their
fitness scores using the modify fitness score function. The
main loop runs for the specified duration of the simulation
(simulation duration), during which clients’ fitness scores are
updated dynamically.

F. Blockchain Storage (Algo. 7)

Lines 1-8: Set the format and define the parameters section.
List the parameters passed to the algorithm, including clients,
global model, number of federated learning rounds, epochs
per round, optimizer, criterion, and blockchain object. Lines
9-27: Perform federated learning for a set number of rounds.
Lines 11-17: For each client, clone the global model, get
client data, train the local model, compute fitness scores, and
update the client’s fitness score. Line 18: Aggregate the models
to update the global model. Lines 20-25: After all training
rounds, for each client, get the best path and its fitness score,
get the current timestamp, and store this data in the blockchain.
Line 26: Return the global model. Lines 28-31: Define the

528
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 6 Dynamic Simulation
1: Parameters:
2: clients ▷ List of clients with their respective datasets
3: simulation duration ▷ Duration of the simulation (in time steps)
4: update interval ▷ Interval for client data and fitness score updates
5: scheduler ▷ Scheduler for triggering client updates and model

aggregation
6: procedure DYNAMIC SIMULATION(clients, simulation duration, up-

date interval, scheduler)
7: time ← 0
8: while time < simulation duration do
9: for each client ∈ clients do

10: if time % update interval == 0 then
11: client.update data() ▷ Update client’s local dataset
12: client.train local model() ▷ Train client’s local model
13: client.compute fitness() ▷ Compute client’s fitness score
14: end if
15: end for
16: scheduler.optimize global model() ▷ Aggregate models and

optimize global model
17: time ← time + 1
18: end while
19: end procedure

Algorithm 7 Store Optimized Paths in Blockchain
1: Parameters:
2: clients ▷ List of clients with their respective datasets
3: global model ▷ Global neural network model to be updated
4: rounds ▷ Number of federated learning rounds
5: epochs per round ▷ Number of training epochs per round
6: optimizer ▷ Optimizer for model training
7: criterion ▷ Loss criterion for model training
8: blockchain ▷ Blockchain object to store data
9: procedure OPTIMIZE AND STORE PATHS(clients, global model,

rounds, epochs per round, optimizer, criterion, blockchain)
10: for round ← 1 to rounds do
11: for each client ∈ clients do
12: local model ← clone(global model)
13: data, targets ← client.get data()
14: trained model ← train on client(local model, data, targets,

optimizer, criterion, epochs per round)
15: client fitness ← compute fitness(client.paths, trained model)
16: client.update fitness score(client fitness)
17: end for
18: global model ← aggregate models(clients, global model)
19: end for
20: for each client ∈ clients do
21: best path ← client.get best path()
22: fitness score ← client.get best fitness score()
23: timestamp ← get current timestamp()
24: store path in blockchain(best path, fitness score, timestamp,

blockchain)
25: end for
26: return global model
27: end procedure
28: procedure STORE PATH IN BLOCKCHAIN(path, fitness score, times-

tamp, blockchain)
29: data ← { "path": path, "fitness_score": fitness score,

"timestamp": timestamp }
30: blockchain.add block(data)
31: end procedure

store path in blockchain procedure to add the best path data
to the blockchain.

V. EVALUATION

We evaluate the protocols on the machine with 16 vCPUs
and 16GB memory, running Ubuntu 20.04. The entire protocol
is implemented with the Python 3.11 version. We use the

Pandas library [23] for reading and manipulating CSV files.
Pandas is widely used in data analysis and manipulation tasks.
We employ the Scikit-learn library [24] for K-Means cluster-
ing. Scikit-learn provides a range of machine learning algo-
rithms for data analysis. For scheduling and executing tasks at
regular intervals, we use the APScheduler library [25], particu-
larly the ‘apscheduler.schedulers.blocking.BlockingScheduler‘
module. APScheduler is useful for task scheduling in Python
applications. For blockchain simulation, we use the Hyper-
ledger Fabric v2.3 [26]. Hyperledger Fabric is an enterprise-
grade, permissioned distributed ledger platform. Its modular
architecture enables a high degree of flexibility, performance,
and security, making it well-suited for our federated learning
environment [27]. The evaluation result is shown in Fig. 3.

Population Size: When the population size increased from
500 to 1500, the best fitness score also gradually increased,
indicating that a larger population size is beneficial for finding
better solutions. However, a larger population size may lead to
longer algorithm run times, necessitating a balance in practical
applications. By increasing the population size, we allow the
algorithm to explore a more extensive search space, enhancing
its capability to avoid premature convergence and increasing
the likelihood of discovering optimal solutions. It is essential
to note that while a larger population can provide better
results, it also requires more computational resources and time,
making it crucial to find an optimal balance based on the
specific problem and available resources.

Number of Training Epochs: When the number of training
epochs increased from 100 to 400, there was a significant
improvement in the best fitness score. This indicates that more
training epochs allow the neural network model to learn more
thoroughly, leading to more accurate predictions of path costs,
which in turn helps the genetic algorithm find better solutions.
By providing the model with more opportunities to refine its
weights, we enhance its generalization capabilities, thereby
improving the overall effectiveness of the genetic algorithm.
However, it’s important to monitor for potential overfitting,
where too many epochs might cause the model to perform
well on training data but poorly on unseen data.

Number of Generations: In the experiments, when the
number of generations increased from 40 to 60 or 80, the
best fitness score also improved. This suggests that more
generations of natural selection, inheritance, and mutation
enhance the optimization effect of the genetic algorithm.
Each additional generation provides more opportunities for the
algorithm to fine-tune solutions and converge towards optimal
results. However, beyond a certain point, the marginal gains
from additional generations may diminish, and computational
costs will increase, so it’s important to determine an optimal
number of generations that balances improvement with effi-
ciency.

Mutation Rate: In the experimental results, as the mu-
tation rate increased, the best fitness score also increased.
This indicates that higher fitness mutations are beneficial
for finding better solutions, increasing population diversity,
and helping the genetic algorithm escape local optima to

529
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. FSCO evaluation result

find global optima. Nevertheless, too high a mutation rate
can affect the stability of the algorithm, leading to non-
convergence of results. A moderate mutation rate is crucial as
it introduces variability without disrupting the overall search
process, allowing the algorithm to explore new solutions while
maintaining a core of high-fitness individuals.

Number of Clusters: When the number of clusters
(num clusters) increased, the best fitness score first showed
an increasing trend. This indicates that the number of clusters
affects the search process of the genetic algorithm, and an
optimal number of clusters enables the algorithm to find better
results. The clustering approach influences how solutions
are grouped and evaluated, affecting the genetic algorithm’s
ability to explore and exploit the search space effectively.
An appropriate clustering number strikes a balance between
diversification and convergence, facilitating the discovery of
high-quality solutions without excessive fragmentation or stag-
nation.

Blockchain Write and Read Phase: As shown in Fig. 4,
when the data size is 250 bytes, the average latency for writing
data on the chain is 2.0606 s; read on the chain is 0.926s.

VI. CONCLUSION

This paper introduces an integrated approach combining
federated learning and blockchain technology, driven by ge-
netic algorithms, to enhance dynamic supply chain manage-
ment. Our model, characterized by its viability, adaptability,
and efficiency, facilitates real-time adjustments in supply line
paths, optimizing the flow of goods and communication.
We ensure robust data security and privacy by embedding

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5
0

0.5

1

1.5

2

2.5

2.1
2.2

2 2.05
2.15

0.9
0.8

0.95 0.93 0.92L
at

en
c y

(m
s)

Read Write

Fig. 4. Blockchain write and read evaluations with 5 experiments. (The data
size is 250 bytes.)

genetic algorithms within a federated learning framework and
utilizing blockchain technology, promoting trust and trans-
parency. Leveraging the Hyperledger platform, our rigorous
performance benchmarks validate the model’s efficiency, fault
tolerance, and flexibility, setting new standards for logistics op-
timization while prioritizing privacy protection. This approach
addresses contemporary flaws in supply chain management,
offering a secure, efficient, and adaptable solution.

REFERENCES

[1] F. Ali. (2021) Global e-commerce sales. Accessed: September 20,
2024. [Online]. Available: https://www.digitalcommerce360.com/article/
global-ecommerce-sales/

[2] S. CSCMP, “Council of supply chain management professionals,” Re-
trieved from, 2014.

[3] P. Ghadimi, C. Wang, and M. K. Lim, “Sustainable supply chain model-
ing and analysis: Past debate, present problems and future challenges,”
Resources, conservation and recycling, vol. 140, pp. 72–84, 2019.

530
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

[4] D. Yadav, R. Kumari, N. Kumar, and B. Sarkar, “Reduction of waste
and carbon emission through the selection of items with cross-price
elasticity of demand to form a sustainable supply chain with preservation
technology,” Journal of Cleaner Production, vol. 297, p. 126298, 2021.

[5] H.-J. Schramm, C. N. Czaja, M. Dittrich, and M. Mentschel, “Current
advancements of and future developments for fourth party logistics in a
digital future,” Logistics, vol. 3, no. 1, p. 7, 2019.

[6] Y.-J. Byon, B. Abdulhai, and A. Shalaby, “Incorporating scenic view,
slope, and crime rate into route choices: Emphasis on three-dimensional
geographic information systems with digital elevation models and crime
rate geospatial data,” Transportation research record, vol. 2183, no. 1,
pp. 94–102, 2010.

[7] S. Ito and Z. Koji, “Assessing a risk-avoidance navigation system based
on localized torrential rain data,” in MATEC Web of Conferences, vol.
308. EDP Sciences, 2020, p. 03006.

[8] N. Hoseinzadeh, R. Arvin, A. J. Khattak, and L. D. Han, “Integrating
safety and mobility for pathfinding using big data generated by con-
nected vehicles,” Journal of Intelligent Transportation Systems, vol. 24,
no. 4, pp. 404–420, 2020.

[9] S. Levy, W. Xiong, E. Belding, and W. Y. Wang, “Saferoute: Learning
to navigate streets safely in an urban environment,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 11, no. 6, pp. 1–17,
2020.

[10] E. Schmitt and H. Jula, “Vehicle route guidance systems: Classification
and comparison,” in 2006 IEEE Intelligent Transportation Systems
Conference. IEEE, 2006, pp. 242–247.

[11] E. Galbrun, K. Pelechrinis, and E. Terzi, “Urban navigation beyond
shortest route: The case of safe paths,” Information Systems, vol. 57,
pp. 160–171, 2016.

[12] C. Meese, H. Chen, W. Li, D. Lee, H. Guo, C.-C. Shen, and M. Nejad,
“Adaptive traffic prediction at the its edge with online models and
blockchain-based federated learning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 25, no. 9, pp. 10 725–10 740, 2024.

[13] J. M. Lozano Domı́nguez and T. d. J. Mateo Sanguino, “Walking secure:
Safe routing planning algorithm and pedestrian’s crossing intention
detector based on fuzzy logic app,” Sensors, vol. 21, no. 2, p. 529,
2021.

[14] R. Kaur, V. Goyal, V. M. Guntur, A. Saini, K. Sanadhya, R. Gupta, and
S. Ratra, “A navigation system for safe routing,” in 2021 22nd IEEE
International Conference on Mobile Data Management (MDM). IEEE,
2021, pp. 240–243.

[15] T. Santhanavanich, P. Wuerstle, J. Silberer, V. Loidl, P. Rodrigues, and
V. Coors, “3d safe routing navigation application for pedestrians and cy-
clists based on open source tools,” ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 6, pp. 143–147,
2020.

[16] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[17] N. Elgharably, S. Easa, A. Nassef, and A. El Damatty, “Stochastic multi-
objective vehicle routing model in green environment with customer
satisfaction,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 1, pp. 1337–1355, 2022.

[18] S. Hulagu and H. B. Celikoglu, “An electric vehicle routing problem with
intermediate nodes for shuttle fleets,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 2, pp. 1223–1235, 2020.

[19] Y.-H. Jia, Y. Mei, and M. Zhang, “A bilevel ant colony optimization
algorithm for capacitated electric vehicle routing problem,” IEEE Trans-
actions on Cybernetics, vol. 52, no. 10, pp. 10 855–10 868, 2021.

[20] P. Stodola and J. Nohel, “Adaptive ant colony optimization with node
clustering for the multidepot vehicle routing problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 27, no. 6, pp. 1866–1880, 2022.

[21] T. Kinoshita and T. Uchiya, “Diversity maintenance method using
multiple crossover in genetic algorithm for vrptw,” in 2021 IEEE 10th
Global Conference on Consumer Electronics (GCCE). IEEE, 2021, pp.
563–565.

[22] J. Duan, Z. He, and G. G. Yen, “Robust multiobjective optimization
for vehicle routing problem with time windows,” IEEE Transactions on
Cybernetics, vol. 52, no. 8, pp. 8300–8314, 2021.

[23] T. P. D. Team, “Pandas: Python data analysis library,” 2023. [Online].
Available: https://pandas.pydata.org/

[24] T. S. learn Development Team, “Scikit-learn: Machine learning in
python,” 2023. [Online]. Available: https://scikit-learn.org/

[25] T. A. D. Team, “Apscheduler: Advanced python scheduler,” 2023.
[Online]. Available: https://apscheduler.readthedocs.io/

[26] T. H. F. D. Team, “Hyperledger fabric v2.3: An enterprise-grade
permissioned distributed ledger platform,” 2023. [Online]. Available:
https://hyperledger-fabric.readthedocs.io/en/release-2.3/

[27] H. Guo, C. Meese, W. Li, C.-C. Shen, and M. Nejad, “B2sfl: A bi-level
blockchained architecture for secure federated learning-based traffic
prediction,” IEEE Transactions on Services Computing, vol. 16, no. 6,
pp. 4360–4374, 2023.

531
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on June 24,2025 at 05:54:31 UTC from IEEE Xplore. Restrictions apply.

