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Abstract—Accurate real-time traffic flow prediction can be
leveraged to relieve traffic congestion and associated negative
impacts. The existing centralized deep learning methodologies
have demonstrated high prediction accuracy, but suffer from
privacy concerns due to the sensitive nature of transportation
data. Moreover, the emerging literature on traffic prediction by
distributed learning approaches, including federated learning,
primarily focuses on offline learning. This paper proposes BFRT,
a blockchained federated learning architecture for online traffic
flow prediction using real-time data and edge computing. The
proposed approach provides privacy for the underlying data,
while enabling decentralized model training in real-time at
the Internet of Vehicles edge. We federate GRU and LSTM
models and conduct extensive experiments with dynamically
collected arterial traffic data shards. We prototype the proposed
permissioned blockchain network on Hyperledger Fabric and
perform extensive tests using virtual machines to simulate the
edge nodes. Experimental results outperform the centralized
models, highlighting the feasibility of our approach for facili-
tating privacy-preserving and decentralized real-time traffic flow
prediction.

Index Terms—Blockchain, Federated Learning, Traffic Flow
Prediction.

I. INTRODUCTION

Traffic prediction plays a critical role in alleviating traffic

congestion and associated negative impacts (e.g., unreliable

travel time estimates, increased fuel consumption, adverse

environmental effects) [1]. Recently, as vehicle miles traveled

(VMT) continues to grow annually, traffic congestion has

become a pervasive societal problem. For example, the 2019

Urban Mobility Report estimated congestion in the United

States resulted in an additional 8.8 billion hours of travel

time and 3.3 billion gallons of extra fuel consumption in 2019

alone [2]. Consequently, real-time traffic prediction can help

alleviate congestion by providing roadway users and busi-

nesses accurate real-time traffic conditions for route planning

and offering rerouting options once the vehicles are en route.

Recently, deep learning (DL) has become a promising

method for traffic flow prediction (TFP), having demonstrated

much success in the literature [3] [4], with prediction accu-

racy as high as 93%. However, in the context of the TFP

problem, existing DL models are centrally trained, requiring

vast amounts of data to be collected and aggregated by a

data center or the cloud for processing. This process makes it

difficult to comply with the data privacy regulations [5] if all

of the collected data must be directly shared to facilitate model

creation, or when the crowd-sourcing techniques are used [6].

In addition, the emergence of connected and autonomous ve-

hicles (CAVs) into the internet of vehicles (IoV) network will

necessitate new methodologies, including real-time learning

and prediction, for utilizing the wealth of data dynamically

generated by sensors on CAVs [7]. Therefore, a paradigm shift

in DL methodologies becomes necessary to enable efficient

and distributed online model training leveraging real-time data

while protecting data privacy.

Federated learning (FL), where multiple participants collab-

oratively train a learning model without exposing the underly-

ing data [8], has been investigated as a way to enable efficient

and distributed knowledge sharing for various applications [9].

For TFP, FL can train the model in real-time and update it

dynamically as traffic sensors and edge devices continuously

collect incoming traffic data. Moreover, FL removes the need

to share or aggregate locally-collected traffic data, providing

improved communication efficiency, privacy, and security for

stakeholders (e.g., data collectors).

This paper proposes a novel framework for real-time traffic

prediction by integrating FL with a permissioned blockchain

network of edge devices. Our FL approach to real-time TFP

utilizes the Federated Averaging (FedAvg) algorithm [8] with

deep learning models. Specifically, the roadside units (RSUs)

collect local traffic data within their respective observance

areas and then leverage it to train a localized traffic flow

prediction model. After training, the RSUs share their knowl-

edge with other participants by sending only the up-to-date

model parameters, in contrast to sharing the local traffic data.

In addition to preserving privacy, our approach has the added

benefit of distributing training workload to the RSUs at the

network edge.

We propose to use a permissioned blockchain network as

the framework for FL. Blockchain is a decentralized network

technology that can provide the benefits of reliability, security,

and integrity for all stored local models in comparison to

centralized storage alternatives (e.g., cloud service providers)

[10] [11]. Regarding the IoV, blockchain has been recently

demonstrated as a strong candidate for improving security

of the networking layer [12]. In the case of permissioned

blockchains, the consortium of participating nodes control both

system usage (writes) and data access (reads) [13] [14]. This is

in stark contrast with public permissionless blockchains (e.g.,

Bitcoin), where anyone can join the network at will, access

all of the data, and participate in consensus processing [15].
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These properties of permissioned blockchain make it an ideal

candidate for the FL framework.

Together, permissioned blockchain and FL provides a novel

way to train TFP models in real-time using locally collected

live data, with additional benefits of being dynamic, privacy-

preserving, decentralized and low-latency in comparison with

the existing, centralized model training approaches. Moreover,

the continued integration of newly learned model parameters

from RSUs enables the global model to better react to dynamic

network conditions. In contrast, existing static and centralized

models suffer from a significant delay to learn from newly

collected data [16]. Notably, these benefits provide strong

justification for further research into integrated blockchain and

federated learning-based approaches for real-time TFP.

Contributions. This paper presents BFRT, a blockchain-

enabled Federated Learning approach to real-time traffic flow

prediction. In this work, we make the following contributions:

• We propose a privacy-preserving and secure-by-design

FL framework for collaborative and real-time traffic pre-

diction leveraging RSUs, edge devices, and permissioned

blockchain. Specifically, we design federated versions of

both the LSTM and GRU models and use traffic flow

prediction as the example case study.

• Unlike existing works [5] [17] [18], we design a real-

time FL process where the data shards for each participant

(e.g., RSU) are distinct and private. Online learning simu-

lations are conducted to replicate real-time data collection

and training of the federated model. We evaluate the

learning performance of our FL models for predicting

traffic in a real-world scenario using dynamically col-

lected incoming arterial data. Experimental results show

that our FL approach can generally outperform the cen-

tralized baseline models.

• We prototype a permissioned blockchain network using

Hyperledger Fabric [19] and simulate the edge nodes

as resource-constrained virtual machines. We evaluate

the performance of the permissioned blockchain network

using the Hyperledger Caliper [20] benchmarking tool.

Experimental results demonstrate the blockchain network

can provide suitable throughput and latency for our

proposed FL architecture.

II. RELATED WORK

In recent years, FL has emerged as a novel approach for

ensuring the privacy of user data in a collaborative learning

setting [21]–[24]. Specifically, FL is a distributed machine

learning approach that enables a model to be trained locally

by a decentralized dataset hosted across various devices with

different locations. Blockchain technology has been applied

in some FL studies to achieve true decentralization during

the FL model aggregation [25]–[27]. Additionally, blockchain-

based FL implementations leverage the blockchain features

such as auditability, traceability, and immutability to make the

FL approach more robust, reliable, and trustworthy [8] [28].

Presently, FL has been at the forefront of various collabo-

rative learning research areas where a large amount of data is

required to train the model and achieve desirable performance.

The authors of [29] discussed how FL could be used instead of

centralized machine learning (ML) for building vehicular net-

work applications in intelligent transportation systems. FL has

also been implemented in several collaborative data-preserving

schemes in smart AI-based IoV systems. Specifically, in the

study of [30] the authors proposed an FL approach to enable

privacy-preserving collaborative ML across a federation of

independent Drones-as-a-Service (DaaS) providers for traf-

fic prediction and parking occupancy management. In [17]

the authors simulated a hierarchical blockchain-enabled FL

algorithm for knowledge sharing within the IoV to improve

reliability and security.

With the ever-growing amount of traffic data and the intro-

duction of DL, traffic flow prediction has achieved tremendous

success. However, the current prediction approaches are also

concerned with the challenges regarding user privacy. Consid-

ering the performance trade-off, the authors of [5] proposed an

FL-based gated recurrent unit neural network algorithm (Fed-

GRU) and a clustering-based ensemble scheme to organize

the data-generating entities for TFP before applying FedGRU.

Additionally, in [31], a multi-task FL framework implementing

hierarchical clustering to partition collected traffic data for

traffic flow prediction and route planning was proposed to

cover the diverse traffic situations. Although these works have

used FL and DL approaches for TFP, they have primarily

evaluated their design with identical data shards using offline

FL training and inference. To the best of our knowledge, no

other FL studies for TFP have focused on the real-time setting

for online FL learning and inference with distinct data shards.

III. BFRT SYSTEM DESIGN

A. Problem Definition

In the context of our work, we define real-time FL-based

TFP as a traffic prediction problem along an arterial corridor.

Overseeing the corridor, there is an administration (e.g., the

State’s Department of Transportation) that manages and oper-

ates a set of deployed RSUs acting as traffic collection devices

along the corridor. Alongside the RSUs are the edge devices

that cooperatively train an online traffic prediction model

leveraging the continuously collected traffic data from the

RSUs in real-time, without sharing their underlying data. The

edge devices also interact with the backend edge computing

servers to execute the FedAvg algorithm and participate in

blockchain-related operations.

B. System Architecture of BFRT

In the framework of Hyperledger Fabric, the entities

of clients, peers, and orderers are defined. Clients C =
{c1, c2, ..., c|C|} are the participants who interact with the

Hyperledger Fabric blockchain network but do not expend

additional resources on blockchain operations (such as trans-

action evaluation, ordering, validation, and block creation and

storage). Peers P = {p1, p2, ..., p|P|} represent the nodes who

perform transaction execution, endorsement, and validation,

as well as maintain the blockchain ledger. Lastly, orderers
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Figure 1: System architecture of BFRT.

O = {o1, o2, ..., o|O|} are the nodes tasked with consen-

sus processing that order the transactions and batch them

into blocks, ensuring consistency and fault tolerance for the

blockchain network.

Fig. 1 depicts the architectural components of BFRT, the

mapping of these components to the entities of Hyperledger

Fabric, and their operations and interactions. All the devices

(RSUs, edge devices, and edge computing servers) are owned

and operated by the administration to have the most de-

ployment flexibility as the deployment strategy for peers and

orderers can significantly impact the blockchain’s performance

(throughput and latency) for traffic prediction.

RSUs deployed along the roadway collects local traffic

data in real-time. The edge device co-located with each RSU

possesses a current copy of the global traffic prediction
model and acts as a client to participate in the FL process

by training the global model with its locally collected traffic

data by the RSU. In BFRT, the global model can be either the

Federated GRU model or the Federated LSTM model. After

one round of training, each edge device submits a transaction
proposal containing the updated parameters of its locally

trained model, encapsulated in the HDF5 file format, to all the

edge computing servers acting as peers for endorsements.

In BFRT, the backend edge computing servers are deployed

alongside base stations. Each peer edge computing server

independently evaluates the transaction proposal and sends

back an endorsement to the client. The client edge device

packages all the received endorsements into a transaction,

then digitally signs it, and submits it to the edge computing

servers that act as orderers. The orderers execute the RAFT
consensus algorithm [32] to establish an unambiguous order

on transactions and batch them into a new block. Note that the

edge computing servers can be configured to run as either peer,

orderer, or both. Each peer edge computing server receives

the new block, validates the transactions, and commits it to its

blockchain ledger copy. Each client edge device downloads the

block, then retrieves the encapsulated transactions, and lastly

performs FedAvg on the sets of most recent model parameters

to generate a new version of the global model.

C. Real-time Federated Learning of Traffic Flow
BFRT trains a model in a real-time manner without requir-

ing exchange or aggregation of any collected data, resulting

in dynamic and efficient-to-update traffic prediction models.

BFRT accomplishes this by letting the clients C collaboratively

train a single, continuously updated global prediction model G
using FedAvg, leveraging the new incoming traffic data, in

a series of communication rounds R = 〈r1, r2, · · · , ri, · · · 〉.
During each round r, every client c ∈ C performs the following

sequence of operations: (1) collect local data; (2) train the

global model with local data; (3) generate a transaction pro-

posal with the updated model parameters; (4) send the transac-

tion proposal to all the peers; (5) upon receiving endorsements,

package the received endorsements into a transaction, digitally

sign it, and submit the transaction to the orderers; (6) retrieve

the newly created block; (7) extract parameters from the

transactions in the block; and (8) update the global model.

These operations are presented in Algo. 1 and Fig. 2.
Initially, each client c is provided an identical model G0

before the first round r1. G0 could optionally be a pretrained

model to jump-start the learning process. At the start of

round ri, each client c collects the incoming local traffic

data din,ic (Algo. 1: line 2) for a predefined period p to be

combined with its local historical traffic data dold,ic to form

dnew,i
c (Algo. 2: lines 3-6). To mitigate overfitting the old
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data, data samples in dnew,i
c should be limited to a maximum

data sample size MaxDataSize, where data from the older

rounds is excluded from the training dataset in the new rounds

(Algo. 2: lines 7-10).

Following data collection, c trains (updates) its local copy

of the global model obtained from the last round Gi−1 using

dnew,i
c (Algo. 1: line 3). After that, the parameter set of

the updated local model Li
c is encapsulated in the HDF5

file format and saved in a transaction proposal txi
c (Algo.

1: line 4). txi
c is sent to all the peers P who evaluate and

endorse txi
c (Algo. 1: lines 5-6). Afterwards, c packages all the

endorsements into a transaction etxi
c and submits etxi

c together

with its digital signature signaturec to orderers O, who

reach consensus on the order of submitted transactions (Algo.

1: line 7) and create the new block Blocki containing all

the transactions. After the block Blocki has been committed

by peers P to their copy of the blockchain ledger, client c
downloads Blocki (Algo. 1: line 8) from peers, extracts the

model parameter sets trained by all the client edge devices

from the transactions within Blocki, and performs FedAvg on

the new model parameter sets to generate a new version of

the global model Gi (Algo. 1: lines 9-10).

Algorithm 1 Operations of clients C in round ri

1: For each client c ∈ C in round ri of R in parallel do:

2: dnew,i
c ← c.UPDDATASET(dold,ic ); � Algo. 2

� dnew,i
c becomes dold,i+1

c in ri+1

3: Li
c ← c.TRAINLOCALMODEL(Gi−1 , dnew,i

c );

4: txi
c ← c.FORMTRANSACTIONPROPOSAL(HDF5(Li

c));

5: c.SENDTOPEERS(txi
c , P );

6: etxi
c ← c.GETENDORSEDTRANSACTION(P );

7: c.SENDTOORDERERS(etxi
c , , signaturec , O);

8: Blocki ← c.BLOCKRETRIEVAL(P );

9: {Li
c, ∀ c ∈ C} ←

c.EXTRACTPARAMS({HDF5(Li
c)} in Blocki);

10: Gi ← c.GLOBALMODELUPD({Li
c, ∀ c ∈ C});

� by FedAvg

Algorithm 2 UPDDATASET() Real-time traffic data collec-

tion and training data update of client c in round ri

1: Input: dold,ic ;

2: Output: dnew,i
c ;

3: while within the data collection period p do
4: din,ic ← c.COLLECTDATA();

5: dnew,i
c ← dold,ic ∪ din,ic ;

6: end while
7: if dnew,i

c .size > MaxDataSize then
8: RemoveSize ← dnew,i

c .size−MaxDataSize
9: dnew,i

c .REMOVEOLDDATA(RemoveSize);

10: end if

D. Permissioned Blockchain Network

BFRT adopts a permissioned blockchain network as the

FL framework. The permissioned blockchain controls and

manages the FL workflow by processing the transactions txc’s,

for all c ∈ C containing the clients’ uploaded model parameters

(i.e., local model updates Lc’s, for all c ∈ C). Specifically, each

transaction in a block consists of an HDF5 file containing the

local model parameters for each RSU in the given FL round

and the associated metadata (e.g., cryptographic signature).

By storing the model updates on the blockchain, the history

of FL can be retrieved and reviewed for quality assurance,

preservation, auditing, and other purposes.

For the blockchain network, the data structure used for the

stored model updates is as follows:

type ModelUpdate struct {
FederatedID string
DetectorID string
RoundNumber int
ModelParameters HDF5

}

The parameters within the ModelUpdate data structure rep-

resent the following: FederatedID refers to the name of the

associated FL process (e.g., “LSTM TFP I-95”); DetectorID
is the identifier for a specific client c ∈ C within the blockchain

network; RoundNumber indicates the FL round index (i.e. i
in ri) associated with a given HDF5 file; and lastly the

ModelParameters field contains the HDF5 file.

The blockchain transaction workflow in BFRT is modeled

after Hyperledger Fabric v2.2 and separates the transaction

endorsement process (execution) from the transaction ordering

process (consensus). The endorsement process abides by a

configurable policy specifying that a subset of peers must

verify and approve the transaction before it can be ordered

into blocks and committed to the chain. When a client submits

a transaction, it is first sent to endorsing peers. Each peer then

simulates the transaction in a containerized sandbox environ-

ment, after which the peer returns the endorsed transaction to

the client.

After collecting the necessary endorsements, the client for-

wards the endorsed transaction set to an orderer who enacts the

consensus mechanism and packages the pending transactions

into a new block. Following consensus, the new block is

forwarded to all the peers who validate the transactions to

verify each transaction’s endorsements and metadata. Once

verification is complete, the transactions are committed to the

local copy of the blockchain and the client is notified. Lastly,

the client retrieves the new block from a peer and executes

FedAvg to update its local version of the global model.

IV. EXPERIMENTAL RESULTS

A. Experimental Design

1) Setup: The BFRT experiments are simulation-based,

which were conducted on Google Colab with one NVIDIA

P100 GPU, two Intel(R) Xeon(R) CPUs @ 2.30GHz, and

13.34 gigabytes of RAM. All experiments involved 7 clients

for both LSTM and GRU federation, and their training samples

were dynamically fed in sequence during each round to sim-

ulate real-time training. The parameters of G0 are randomly
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Figure 2: Workflow of the BFRT system.

initialized in every experiment instead of using a pretrained

model. Each client in both LSTM and GRU federations adopts

FedAvg, with 5 local training epochs per round.

The simulations of blockchain operations were conducted

on a virtual machine with 24 gigabytes of RAM and 8 cores

of an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz. We

simulate the proposed system of edge devices on Hyperledger

Fabric version 2.2, using docker containers to represent the

blockchain peers and blockchain orderers. We set resource

restrictions on each container in accordance with the system

architecture, providing a maximum of 2 gigabytes of RAM to

each peer and 4 gigabytes of RAM to each orderer respectively

while ensuring peers are provided with 50% of the processor

clock cycles given to each orderer container. In our reference

deployment, we instantiate 4 peers each and 5 orderers using

the RAFT consensus algorithm. For all the blockchain exper-

iments, we leverage the Hyperledger Caliper benchmarking

tool to measure our deployment’s transaction throughput and

latency under various transaction loads.

2) Dataset: The dataset used in the experiments is from

the Delaware Department of Transportation (DelDOT), which

includes traffic flow data collected from DelDOT maintained

roadways at a 5-minute time resolution. We select 7 nonse-

quential loop detectors along the I-95 north arterial to act as

the FL clients in BFRT. The selected dataset for each detector

includes data ranging from the start of August 2019 until the

end of September 20191.

3) Models: The studies in [33] found that the RNN mod-

els, specifically LSTM and GRU, exhibit comparably good

inference performance on the traffic flow data from the PeMS

1We separate 80% of the data for real-time training and inference and save
the remaining 20% for future work involving offline prediction experiments.

dataset [34] when training offline in a centralized manner.

Inspired by this finding, we choose both LSTM and GRU

models for real-time FL, termed LSTM-Fed and GRU-Fed. To

highlight the performance of the federated models, we also let

each client train its own centralized LSTM and GRU, termed

LSTM-Base and GRU-Base, using the same dataset dnew,i
c

in round ri, without federation, as the baseline models.

Specifically, each client c in ri also uses the dynamically

updated dnew,i
c to train either LSTM-Base or GRU-Base by 5

epochs as in BFRT, but the updated baseline model Bi will

continue to be trained in round ri+1, whereas in BFRT the new

global model Gi will replace the local model of all c ∈ C when

progressing to round ri+1. The baseline training algorithm is

shown in Algorithm 3.

Algorithm 3 Baseline model training of client c in round ri

1: For any client c ∈ C in any round ri ∈ R:

2: dnew,i
c ← c.UPDDATASET(dold,ic ); � Algo. 2

3: Bi
c ← c.TRAINBASELINEMODEL(Bi−1

c , dnew,i
c );

All federated and baseline RNN models in our experiments

have 12 neurons in their input-layer and 1 neuron in their

output-layer, respectively. This corresponds to 1 hour of traffic

flow data at a 5-min resolution, which produces a 5-min look

ahead prediction. As a result, the sample size of din,ic , i > 1 is

set to equal the input shape of the RNN models (i.e., 12), to

control data flow by hours. The exception is that dic.size, i = 1
is set to 24 (i.e., 2 times of din,ic .size, where i > 1) in r1 for

all c ∈ C, because the models need at least 13 data samples

for training. The result is a total of 1165 rounds for all BFRT
experiments.

After designing the four models (i.e, LSTM-Base, LSTM-
Fed, GRU-Base, and GRU-Fed), we perform experiments with

MaxDataSize = 24, 36, 48, 60, 72 because the sample size

is found to influence the prediction accuracy of deep learning

models in [35]. In our experiments, MaxDataSize controls

the sample size for FL training in each round. Due to the

space constraint, we report and compare the performance of

the four models with MaxDataSize = 24 and 72. Moreover,

because the model architecture impacts prediction accuracy,

we conducted small-scale FL simulations with varied numbers

of hidden layers and neurons prior to training the LSTM

models. Based on the error values, we choose 2 hidden layers

and 128 neurons for each hidden layer for the LSTM model

architecture. For the GRU model architecture, we make our

design decisions based on the results of [5], selecting 2

hidden layers with 50 neurons in each. Due to the space

limitations, we omit the report for the error values in these

tuning experiments. To ensure reproducibility, the simulation

code, selected dataset, and all other experimental results are

made available in our GitHub repository2.

2https://github.com/hanglearning/BFRT
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(a) LSTM with MaxDataSize = 24 (b) GRU with MaxDataSize = 24

(c) LSTM with MaxDataSize = 72 (d) GRU with MaxDataSize = 72

Figure 3: Real-time inferences curves of all 7 detectors during the last 24 rounds in BFRT

B. BFRT Performance on Real-time Inferences
Fig. 3 shows the partial real-time inference curves of the

four models for the 7 detectors with MaxDataSize = 24
and 72. Out of the inference values in the entire 1165 rounds,

we report the last 24 FL rounds which includes 1 day of traffic

flow data. Algo. 4 describes how we obtained the inference

values (i.e., the values of BASE and FED in Fig. 3).
For any client c ∈ C in round ri ∈ R, i > 1, a temporary

dataset dpred,jc is first initialized by extracting an input shape
(i.e., 12 in our experiments, the same as din,ic .size, i > 1)

number of the latest data points from dold,ic (Algo. 4: line 5).

As a special case in r1, c only performs learning on din,1c ,

and therefore the inference starts from r2. The 5-min look-

ahead real-time inference in ri, i > 1 is done by c ∈ C using

Bi−1
c or Gi−1 to predict on the continuously updated dpred,jc

(Algo. 4: lines 6-12). Specifically, the real-time inference has

input shape steps (Algo. 4: line 6), which is assumed to be

exactly within the data collection period p. In our experiments,

we set p to be 1 hour to be consistent with the input shape
(i.e. 12) of the models, which in turn results in 12 steps of

inference. During each step, c uses Bi−1
c or Gi−1 to predict

on dpred,jc , and output a 5-min look-ahead prediction to be

added to BASEi
c or FEDi

c (Algo. 4: lines 7-8). For instance,

dpred,1c , which is assigned at Algo. 4: line 5, will be used to

output the first prediction of the traffic volume in ri. Then,

c waits to collect one incoming data (i.e., at a 5-min interval

in our experiments) and adds it to din,ic (Algo. 4: line 9).

Notably, Algo. 4: line 6, line 9 and line 10 make up the

COLLECTDATA() function appearing in Algo. 2: line 4. After

that, dpred,jc is updated by popping out its oldest data point,

and merging with din,ic (4: line 11).

After completing an input shape number of prediction

steps, the resulted BASEi
c and FEDi

c will contain the in-

ference values from the corresponding models for ri, i > 1.
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(a) MAE Error of LSTM with MaxDataSize = 24

(b) MAE Error of GRU with MaxDataSize = 24

(c) MAE Error of LSTM with MaxDataSize = 72

(d) MAE Error of GRU with MaxDataSize = 72

Figure 4: The MAE errors of real-time inferences of all 7

detectors in all rounds of BFRT

Lastly, din,ic is assigned to TRUEi
c (Algo. 4: line 13), which

represents the TRUE curve(s) in Fig. 3.

In each subfigure of Fig. 3, we picked the detector with

the DetectorID 19912 NB as the focus while keeping the rest

of the six detectors’ plots small for reference. The x-axis

of all the 28 plots indicates the round index for the last 24

rounds, and the y-axis represents the traffic volume. Therefore,

for instance, index 1165 on the x-axis represents r1165, and

the three curves plotted after index 1165 are TRUE1165,

BASE1165 and FED1165.

1) Baseline models vs. federated models: By comparing

the proximity of the BASE and the FED prediction curves to

the TRUE data curve for 19912 NB in Fig. 3a, we observe

that LSTM-Fed has better overall prediction accuracy than

LSTM-Base with MaxDataSize = 24 from r1142 to r1165.

This trend is also seen in Table I when comparing the error

values between LSTM-Base and LSTM-Fed for 19912 NB.

Table I denotes four types of error values (i.e. MAE, MSE,

RMSE, MAPE) for analyzing predictions resulting from the

four models of all 7 detectors with MaxDataSize = 24
and 72 during the last 24 rounds. The number following the

error type indicates MaxDataSize (e.g., RMSE-72 denotes

the RMSE inference error with MaxDataSize = 72 over

the entire last 24 rounds). The values highlighted in green or

beige are the smaller error values between the corresponding

baseline and federated models within the relative 2-value

groups. For instance, the LSTM-Fed MAE-24 error value 23.07

of 19912 NB is highlighted, to compare with 39.68 to show

that LSTM-Fed has smaller MAE-24 error compared to LSTM-
Base for 19912 NB.

From Table I, it is observed that most of the inferences

from the federated models outperform the baseline models.

This is especially true for detectors 19912 NB, 19951 NB,

19992 NB, 19997 NB. For 19985 NB, the baseline models al-

ways outperform the federated models with MaxDataSize =
24, whereas the federated models always have smaller er-

rors than the baseline models with MaxDataSize = 72.

This may be the result of differences in the real traffic

flow trend of 19985 NB compared to the other detectors

(19912 NB, 19951 NB, 19992 NB, and 19997 NB), due to

changes in network topology (e.g., interstate exits or merges)

between detector locations. Notably, in Table I, increasing

MaxDataSize results in improved accuracy for the federated

model on 19985 NB, highlighting the importance of additional

historical data to rectify the difference in data trends. On the

other hand, 19924 NB and 19978 NB have mixed results. For

19978 NB, 9 out of the 16 pairs of error values indicate that

federated models outperform its baseline models. However,

For 19924 NB, only 6 out of the 16 pairs of error values

indicate that federated models outperform its baseline models.

This may be the result of a non-recurrent traffic event or

recurrent congestion occurring around r1160, where a sharp

drop in volume is observed.

In summary, the error values in Table I imply that most fed-

erated models outperform their corresponding baseline models

in our experiments. However, as model performance is dataset

dependent, we plan to perform the comparative experiments

using different datasets in future work.

2) LSTM models vs. GRU models: The error values high-

lighted in green also indicate the smallest error value among all

four models for the respective detector. For instance, the GRU-
Fed MAE-24 error value 19.79 of 19912 NB is highlighted in

green, to compare with the values 39.68, 23.07 and 24.04,

and highlight that GRU-Fed has the smallest MAE-24 error

compared to the three other models on detector 19912 NB.

The total counts of values highlighted in green with respect to

the four models for each detector are also summarized in Table

II and Table III. As seen in Table II, GRU-Fed has the highest

smallest error value count for all four types of errors across

all the detectors with MaxDataSize = 24, whereas GRU-
Fed and LSTM-Fed have a tie with MaxDataSize = 72. In

conclusion, the GRU models generally outperform the LSTM
models in our experiments.

3) Real-time MAE errors across all 1165 rounds: Similar to

reporting error/loss values across training epochs in centralized

training, we collected the real-time training errors to examine

the model performance as the BFRT rounds progress. Fig. 4

shows the normalized MAE errors in 100 round intervals for

the four models with MaxDataSize = 24 and 72 across

all 1165 rounds for all 7 sensors. In all 28 subplots, the

x-axis represents round range while the y-axis denotes the
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Table I: Real-time Inference Errors of the Last 24 Rounds

DetectorID Model MAE-24 MAE-72 MSE-24 MSE-72 RMSE-24 RMSE-72 MAPE-24 MAPE-72
LSTM-Base 39.68 22.54 3444.57 992.92 58.69 31.51 0.22 0.13
LSTM-Fed 23.07 19.82 1076.03 749.4 32.8 27.38 0.13 0.11
GRU-Base 24.04 23.77 1088.77 919.01 33 30.32 0.15 0.15

19912 NB

GRU-Fed 19.79 19.91 717.44 738.07 26.79 27.17 0.12 0.11
LSTM-Base 37.11 36.91 2863.12 2577.12 53.51 50.77 0.13 0.13
LSTM-Fed 50.47 35.88 4761.38 2590.1 69 50.89 0.17 0.11
GRU-Base 40.14 43.78 2981.27 3441.6 54.6 58.67 0.15 0.17

19924 NB

GRU-Fed 45.8 41.49 4001.79 3306.1 63.26 57.5 0.15 0.13
LSTM-Base 56.6 28.39 8178.46 1469.3 90.43 38.33 0.22 0.12
LSTM-Fed 33.16 26.07 2116.6 1288.38 46.01 35.89 0.14 0.11
GRU-Base 29.19 31.4 1639.82 1669.34 40.49 40.86 0.14 0.15

19951 NB

GRU-Fed 28.48 27.84 1563.93 1396.44 39.55 37.37 0.12 0.12
LSTM-Base 20.91 16.79 830.04 517.22 28.81 23.9 0.21 0.16
LSTM-Fed 25.79 16.65 1039.69 466.47 32.24 21.6 0.47 0.26
GRU-Base 21.81 18.56 877.46 585.14 29.62 24.19 0.26 0.24

19978 NB

GRU-Fed 20.31 17.62 639.12 515.08 25.28 22.7 0.39 0.29
LSTM-Base 17.11 15.88 512.8 424.23 22.65 20.6 0.19 0.18
LSTM-Fed 22.18 15.43 787.55 412.16 28.06 20.3 0.25 0.17
GRU-Base 15.07 14.72 376.12 390.9 19.39 19.77 0.18 0.16

19985 NB

GRU-Fed 17.2 14.7 479.97 375.67 21.91 19.38 0.2 0.16
LSTM-Base 25.71 20.59 1155.86 730.62 34 27.03 0.22 0.16
LSTM-Fed 19.94 17.05 718.44 514.14 26.8 22.67 0.16 0.13
GRU-Base 17.1 18.77 537.46 613.88 23.18 24.78 0.14 0.16

19992 NB

GRU-Fed 16.72 16.69 489.48 494.51 22.12 22.24 0.14 0.13
LSTM-Base 39.53 22.91 3288.69 968.6 57.35 31.12 0.2 0.12
LSTM-Fed 25.74 19.76 1305.35 788.8 36.13 28.09 0.13 0.11
GRU-Base 22.4 23.89 1042.65 994.79 32.29 31.54 0.12 0.14

19997 NB

GRU-Fed 19.79 21.44 840.6 950.62 28.99 30.83 0.12 0.11

Table II: Best Model Count with MaxDataSize = 24

Model MAE-24 MSE-24 RMSE-24 MAPE-24
LSTM-Base 1 1 1 2
LSTM-Fed 0 0 0 0
GRU-Base 1 1 1 1
GRU-Fed 5 5 5 4

Table III: Best Model Count with MaxDataSize = 72

Model MAE-72 MSE-72 RMSE-72 MAPE-72
LSTM-Base 0 1 1 1
LSTM-Fed 4 3 3 2
GRU-Base 0 0 0 0
GRU-Fed 3 3 3 4

normalized MAE error for that round range. There are 12

values on the x-axis, each representing a range of 100 rounds,

except the last round representing 65 rounds. For example,

the y value corresponding to the x value of 500-600 represents

the normalized MAE error comparing [TRUE500, TRUE600]
and [BASE500, BASE600] (yellow line), or comparing

[TRUE500, TRUE600] and [FED500, FED600] (green line).

The percentage value in each plot indicates the percent of 100

round groups where the federated model inference error is

lower than the baseline model. The percentage is colored red

when the value is greater than or equal to 50%, highlighting

that the federated model outperformed the baseline model in

that particular experiment.

By comparing Fig. 4a and Fig. 4b, we observe that the

GRU models exhibit flatter error curves compared to the LSTM
models. This indicates that with MaxDataSize = 24, the

GRU models have better real-time prediction ability. Also, the

FED curves of the GRU models for 19924 NB, 19951 NB,

19978 NB, and 19951 NB in Fig. 4b have lower MAE errors

in earlier rounds compared to their respective FED curves for

Algorithm 4 Real-time inference of client c in round ri, i > 1

1: For each client c ∈ C in round ri of R, i > 1:

2: Input: Gi−1, Bi−1
c , dold,ic ;

3: din,ic , BASEi
c, FEDi

c ← [], [], []; � Empty arrays.

4: j ← 0;

5: dpred,jc ← dold,ic [: input shape];
� Extract input shape number of the latest data.

6: while j < input shape do
7: BASEi

c.ADD(c.PREDICTBY(Bi−1
c , dpred,jc ));

8: FEDi
c.ADD(c.PREDICTBY(Gi−1 , dpred,jc ));

9: din,ic .ADD(c.COLLECTONEDATA());

10: j ← j + 1;

11: dpred,jc ← dpred,jc .POPLEFT() ∪ din,ic ;

12: end while
13: TRUEi

c ← din,ic ;

the LSTM models in Fig. 4a. Additionally, when comparing

Fig. 4a and Fig. 4c, and also Fig. 4b and Fig. 4d, we observe

that increasing the MaxDataSize from 24 to 72 may improve

the real-time prediction accuracy in earlier rounds as the error

curves quickly become smooth for all 7 sensors. Lastly, when

comparing Fig. 4c and Fig. 4d, we observe that both LSTM and

GRU models have comparably good inference performance.

This finding is consistent with the result in Table III. 17 out of

the 28 plots have the percentage values in red, implying that

the federated models outperform the corresponding baseline

models in real-time prediction over the entire 1165 rounds in

over 60% of our experiments.

C. Performance of Blockchain Network

In our blockchain experiments, we analyze the operation

performance using two metrics: transaction throughput and
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Figure 5: Average transaction throughputs for READ and

WRITE operations.
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Figure 6: Maximum and average transaction latencies for

READ operations.

transaction latency. Transaction throughput quantifies the num-

ber of transactions per second (TPS) which can be success-

fully processed by the blockchain network, while the latency

indicates the running time of a single transaction from the

initial construction by the client until the time it is successfully

committed to the ledger. In all the experiments, we analyze

both metrics under increasing send rates, where the transaction

send rate indicates the number of TPS input by the blockchain

clients. Notably, we choose to differentiate the operations of

READ and WRITE, as the cost of both operations is not the

same, and the selected operation has a notable impact on the

network performance.

1) Transaction Throughput: In Figs. 5a and 5b, we illus-

trate the throughput of our blockchain network under the

READ and WRITE operations, respectively. We report the

average transaction throughput over multiple testing cycles for

quantifying the performance. Fig. 5a shows that the transaction

throughput increases as the send rate increases to 2000.

However, at send rates above 2000, the performance levels off,

and throughput remains relatively constant. This indicates that

the maximum network throughput for the READ operation is

about 1750 TPS.

Likewise, for the WRITE operation, Fig. 5b illustrates that

the network performance begins to stabilize when the peak

TPS of 390 is reached at send rate 400. These results highlight

that writing is a more expensive blockchain operation than

Figure 7: Maximum and average transaction latencies for

WRITE operations.

reading. Notably, the performance degrades slightly as the

send rate increases beyond 400. One reason for this is the

increased processing time of the WRITE operation compared

to the READ operation. For the WRITE operation, as the

send rate increases beyond the maximum network throughput,

transactions will amass in the pending transaction pool causing

a bottleneck. This issue is less visible in the READ results, as

pending transactions are processed faster.

2) Transaction Latency: Figs. 6 and 7 report both the aver-

age and minimum transaction latency for READ and WRITE

operations, respectively. In Fig. 6 there is a clear uptrend in the

latency when increasing send rate because higher transaction

loads on each peer and orderer will increase confirmation

times. However, it is notable that even at the highest send

rate of 2400 TPS, the average latency value is still only 0.07

seconds. This demonstrates that the blockchain network can

perform well for retrieval operations even under considerable

transaction loads. On the other hand, Fig. 7 shows severely

degraded performance when the WRITE load exceeds 400

TPS, with the average latency value rapidly converging to

the maximum latency. This confirms that the blockchain will

not perform well in our architecture if the WRITE load

exceeds 400 TPS. Comparing both operations, it is clear that

even at lower send rates, the average and maximum latency

values for the WRITE operation are significantly higher than

that of the READ operation.

V. CONCLUSION

This paper proposes BFRT, a blockchained federated learn-

ing architecture for online traffic flow prediction using real-

time data. BFRT protects the privacy of underlying traffic data,

while also decentralizing computation to the network edge.

We prototype both the FL process and blockchain network

using a combination of Python and Hyperledger Fabric, and

conduct extensive experiments. In our FL experiments, we

federated LSTM and GRU models and measured the real-time

training and prediction performance using newly collected and
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distinct arterial traffic data shards. Additionally, we simulated

the edge devices using a Hyperledger Fabric blockchain net-

work with resource-limited docker containers and measured

the READ and WRITE performance using the Hyperledger

Caliper benchmarking tool. The results show that our FL

process and models can generally outperform the centrally

trained baseline models, while the permissioned blockchain

network can provide high throughput and low latency. For

future work, we plan to investigate new methodologies for on-

line multi-output prediction and also experiment with various

blockchain architectures to better streamline the FL workflow.

We anticipate this work will lay the foundation for future

research into real-time traffic flow prediction models.
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