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 A B S T R A C T

The Updatable Signature (US) allows valid signatures to be updated by an update token without accessing the 
newly generated signing key. Cini et al. (PKC’21) formally defined this signature and gave several constructions. 
However, their security model requires the secrecy of the update token, which is only applicable in some 
specific scenarios, such as software verification in the trusted App Store. In Web3, information is usually shared 
via a public blockchain, and decentralized private computation is expensive. In addition, one can use the same 
token to update both the signing key and signatures and all signatures can be updated with a single token. 
The adversarial signature generated by an adversary might also be updated. Therefore, this work explores 
the (im)possibility of constructing an Updatable Signature with public tokens (USpt), the tokens of which are 
signature-dependent. Specifically, we define the updatable signature with public tokens and present its security 
model. Then, we present a concrete USpt scheme based on the Boneh–Lynn–Shacham signature. This variant 
introduces a limitation for the signer who must maintain a dataset about its signed messages or hashes of 
them, which is applicable in our applications.
. Introduction

A digital signature scheme is a cryptographic scheme that ensures 
nformation integrity, authentication, and non-repudiation. It allows 
he data sender to ‘‘sign’’ the information, and the receiver can verify 
he signature to confirm that the information is indeed from the claimed 
ender and has not been tampered with during transmission. In other 
ords, a digital signature scheme can be designed to provide signature 
ervice through unforgeability under the circumstance that the adver-
ary can acquire a list of message–signature pairs and is trying to forge 
 signature for some new message. Digital signature is an indispensable 
ecurity tool in modern digital communications and file exchange and 
s widely used in software distribution, email, online transactions, and 
ther scenarios that require high-security verification.
Post-compromise security is a relatively new security goal for dig-

tal signatures. This security property was formally defined by Cohn-
ordon, Cremers, and Garratt [1], who considered the security of 
uthenticated Key Exchange (AKE) protocols [2,3] after a party was 
ully compromised under some reasonable assumptions. Informally, 
n their adversary model with post-compromise security through the 
tate, there must be at least one uncompromised session before the 
est session (the session key of which is picked as a challenge). In 
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other words, post-compromise security considers the security after full 
compromise but adds some restrictions to the adversary afterwards. A 
similar security goal is forward security, which requires that subsequent 
compromises will not affect the security of any previous sessions. 
A common feature of forward and post-compromise security is that 
they consider the security of cryptographic schemes in terms of time 
sequence.

Updatable Signature (US) captures post-compromise security con-
cerning signature schemes. Cini et al. [4] present the definition of 
US with secret tokens and its security model inspired by updatable 
encryption. Their model divides the operations of signers and verifiers 
into epochs, and in each epoch, different private keys are used for 
signing and public keys for verification. Suppose an adversary obtained 
some signer’s signing key 𝑠𝑘𝑒 in epoch 𝑒. Then the adversary lost access 
to the signer’s local state (this attack can be considered as a transient 
corruption [5] without controlling the signer); the signer is somewhat 
aware of this leakage and wants to update its local signing key to 𝑠𝑘𝑒+1, 
which also advances the epoch to 𝑒+1. To keep the validity of previous 
signatures in epoch 𝑒, say a signature 𝜎𝑒 without loss of generality, 
the signer also generates a token 𝛥𝑒+1 and secretly transfers it to the 
verifier who wants to update 𝜎𝑒 to a current-epoch-valid signature, 𝜎𝑒+1. 
ttps://doi.org/10.1016/j.jisa.2025.104058
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Interestingly, unlike traditional signature schemes, this US definition 
introduces a trusted third-party agent, the receiver of the update token 
and responsible for updating the signatures instead of the verifiers.

1.1. Motivation

The US in [4] relies on a trusted third-party agent, which limits 
its application scenarios and might conflict with some system require-
ments, e.g., a trustless blockchain application (see more specific ap-
plications in Section 5.1). The public blockchain virtual machine is a 
proxy/agent in this case. However, the update token can also be used to 
update the signing key. If it is public, the adversary can update the last 
epoch’s signing key and continue forging valid signatures. Therefore, 
we seek to make token public and rely on a semi-honest agent in US 
schemes to break the above limitations.

This modification is significant for the application in Web3, where 
the signatures are usually managed by a public blockchain, and the 
computation on this agent is conducted in a decentralized manner. We 
detail discussed the application in Section 5.1.

1.2. Related and previous work

The Cini et al. framework [4] is well established for the US with se-
cret tokens. They build their first construction based on Key-
Homomorphic signature schemes [6], two features of which are the
homomorphism of signing keys and the perfect adaptability of signa-
tures (formally defined in Definition  4). They also designed US from 
Boneh–Lynn–Shacham (BLS) signature [7], equipping a property called 
Message Independence (MI): the update algorithm does not need to take 
the message as an input. This feature simplifies the update procedure 
since the verifier does not need to retrieve the original message. The 
security model rules out trivial attacks by a leakage profile [8], com-
promised by key-update inferences, token inferences, and signature-
token inferences. Those records log the adversary’s compromising 
queries, providing evidence to identify the challengable signatures and 
corresponding epochs.

Zhou and Liu [9] improved the US schemes by weakening the 
function of update tokens, which is similar to our goals, but their 
application scenario is the same as that of Cini et al. [4]. Specifi-
cally, their solution relies on a secure channel established by an AKE 
protocol [10] between the signer and a trusted agent (considered a 
server in their work). At the same time, the secure channel and extra 
protocols are significant issues we want to avoid, and deploying an AKE 
protocol also renders the final scheme interactive. Furthermore, their 
update process also utilized indistinguishability obfuscation [11,12], 
introducing additional computational overhead that is considerable 
relative to a signature scheme. They introduce a complete security 
analysis and proof [13] based on a more stringent CDH assumption 
recently, and the tokens are generated by the signer together with the 
proxy/server.

Bellare and Miner [14] devised the first forward-secure signature 
scheme. This scheme updates the signing key without modifying the 
verification key. An updated key-signed signature can be verified by the 
verification key with the corresponding epoch ‘‘timestamp’’. However, 
this kind of signature scheme does not care about the signature update; 
the signer must sign the message again even though this message 
was signed in the previous epoch. This work might not be technically 
relevant to the US because they have different goals, but the security 
notion is close but still different from the post-compromise security.

Beck et al. [15] abstract a new primitive, time-deniable signature. 
Each signature is associated with a timestamp, and the signer is able 
to disavow any signatures after a period of time. Their application 
is to facilitate email communication where ephemeral authentication 
is sufficient. Just like the forward-secure signature, a time-deniable 
signature does not care about the updatability and validity of ‘‘out-
dated’’ signatures. This notion serves short-term authentication, and 
2 
its original intention is to prevent the non-repudiation of long-term 
authentication after data leakage or theft.

Chatzigiannis et al. [16] survey the most recent Web3 recovery 
mechanisms. Many crypto wallets are multi-party computed based on 
multi-signatures or threshold signatures, and the recovery mechanisms 
originate from the assumption of (at least) multi-keys’ security. Those 
key rotation methods prevent future transactions using compromised 
or stolen keys; they cannot reverse transactions that have already 
occurred. However, the US rotates keys and signatures simultaneously; 
our signature-dependent updatability can also enable the signer de-
niability for illegal signatures. More specifically, the design idea of 
managerless group signature [17] is to spread the risk of key leakage, 
regardless of the data protected by the key. The nature of an updatable 
signature is to provide a convenient way to maintain the legitimacy 
of the signature, that is, how to safely cleanse the risk of leakage. 
KELP [18] provides a reactive way for key recovery based on smart 
contracts. They use staged and challenge-based contracts to reclaim the 
stolen or mis-transferred funds, which is not about key rotation but an 
engaging way of hindering attackers’ behavior.

1.3. Updatable signature with public tokens

We informally introduce our definition of the Updatable Signature 
with public tokens (USpt) here.

Recall the original demand for key updating: (1) replacing the 
signing key; (2) in the meantime, existing signatures can be updated 
into valid new signatures using signature update tokens released by the 
signer to avoid resigning the messages using the updated signing key. 
The first requirement comes from the need for security, and the second 
requirement comes from the need for usability. Suppose there is some 
adversary  who has obtained a signing key 𝑠𝑘𝑒,  can generate valid
signatures, say 𝜎′𝑒, in epoch 𝑒, but not the signature 𝜎′𝑒+1 valid in epoch 
𝑒 + 1 since the key is replaced from requirement (1). Because our US 
scheme publishes update tokens publicly,  can always use this token 
to update its forged signature 𝜎′𝑒 to a valid signature 𝜎′𝑒+1 satisfying 
the requirement (2). Note that here, we refer valid to the signatures 
that can be verified by the signer’s public key of the current epoch. 
Suppose we exclude this attack in our security model, e.g., challenging 
a signature from updating a forged but expired signature. In that case, 
this definition is too weak for the practical scenarios: the adversary 
is not even allowed to challenge the message chosen by itself.

In this case, we must prevent a public token from being exploited 
by adversaries. Our solution is under the assumption of a signed-message 
database: the signer maintains a database to record the messages (or 
hash of them) it signed for future updating the signatures that itself 
generated. Therefore, the signer can distinguish the signatures generated 
by itself from those forged by other parties even if its signing key 
is leaked, and the published tokens are only for signatures generated 
by itself. This assumption is not too strong for the application of US 
schemes: recall that adversaries are allowed to query a signing key 
of a signer who will not follow instructions from the adversaries. In 
other words, the adversaries can obtain read access to the signer but 
not write access. This assumption is also practical since the signer 
only stores the hash of signed messages, not all the messages, which 
is considerably longer than the hashes of it. This difference can be 
concluded as our signature-update tokens are signature-dependent and 
the signature-update tokens in [4] are signature-independent, similar to 
the notion in updatable encryption schemes [19]. We discussed the 
difficulties in constructing a public signature-independent token with 
a constant size in Section 5.

One may argue that this assumption might be too complex to 
deploy and is out of touch with reality. To understand this issue, we 
can imagine the signer as an artist who will sign each of his/her 
artwork and store the hash of the artwork and the signature as proof 
of originality. This signer will also store hashes of artworks by some 
means, such as the InterPlanetary File System (IPFS) [20] or a hard 
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disk. In this case, the signature has economic value and is valuable to 
consider the stateful signer. On the other hand, potential adversaries 
are also attracted by the economic value [21], increasing the necessity 
of this updatable notion. For any challenge epoch 𝑒∗ and message 
𝑚∗, we allow the adversary to query the signatures of any message 
other than 𝑚∗ before epoch 𝑒∗. This is similar to basic Existential 
UnForgeability under adaptively Chosen Message Attacks (EUF-CMA) 
security, where an adversary cannot submit a signature already queried 
for as a challenge. However, in the USpt, a query to a signature in any 
epoch will cause it to be updated in all subsequent epochs because the 
update token is public. Therefore, we need to rule out this trivial attack.

1.4. Contribution

The contributions of this work can be concluded as follows:

1. define the model for updatable signature with public tokens and
2. construct a USpt based on BLS signature and prove its security.

The rest of the paper will be organized as follows. Section 2 will 
introduce some common terminology, define key homomorphic signa-
tures, and discuss security concepts related to signatures. Section 3 will 
introduce updatable signatures and how we define security when the 
token is public. We construct a USpt in Section 4 and prove its security. 
Finally, Section 5 will discuss the applications in Web3 and conclude 
the future work.

2. Preliminaries

2.1. Notation

For 𝑛 ∈ N, let [𝑛] ∶= {1,… , 𝑛}, and let 𝜆 ∈ N be the security 
parameter. For a finite set , we denote by 𝑠 ←  the process of 
sampling 𝑠 uniformly from . Similarly, for an algorithm 𝖠, we denote 
by 𝑦 ← 𝖠(𝑥) be the process of running 𝖠 on input 𝑥 with access to 
uniformly random coins and assigning the result to 𝑦. To make the 
random coins 𝑟 explicit, we write 𝖠(𝑥; 𝑟). We use ⟂ to indicate that an 
algorithm terminates with an error and 𝖠𝖡 when 𝖠 has access to call 𝖡, 
where 𝖡 may return ⊤ as a distinguished special symbol. We say that an 
algorithm 𝖠 runs in Probabilistic Polynomial Time (PPT) if the running 
time of 𝖠 is polynomial in security parameter 𝜆. For some signature 
schemes, we denote the sets of signing keys, public keys, key-update 
tokens, and signature-update tokens by ,, ,  and  .

Let 𝐹  be a binary relationship. We denote by  as the domain of 𝐹 , 
 as the range of 𝐹 . We say 𝐹  is a function, if ∀𝑥 ∈  , ∃ unique 𝑦 ∈ 
s.t. 𝑥𝐹𝑦; when we treat some elements 𝑥′ of the domain as constants, 
we write the constants as the subscript 𝐹𝑥′ . For function 𝐹 , if 𝑥𝐹𝑦, we 
write it as 𝑦 = 𝐹 (𝑥). We say a function 𝐹 ∶  →  , with domain 𝑋
and range 𝑌 , is bijective, if ∀𝑦 ∈  , ∃ unique 𝑥 ∈  s.t. 𝑦 = 𝐹 (𝑥). In this 
case, the inverse function of 𝐹  is the function 𝐹−1 ∶  →  . Given two 
functions 𝑔 ∶  →  and ℎ ∶  → , their composition is the function 
ℎ◦𝑔 ∶  →  defined by (ℎ◦𝑔)(𝑥) = ℎ(𝑔(𝑥)).

2.2. Key-homomorphic signature

Derler and Slamanig [6,22] defined the Key-Homomorphic (KH) 
signature scheme, which is the main foundation of US with secret 
tokens [4]. We recall relevant definitions here.

Definition 1 (Signature Scheme). A signature scheme 𝛴 is a triple 
(𝖪𝖾𝗒𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒) of PPT algorithms, which are defined as follows:

• 𝖦𝖾𝗇(𝜆) ∶ This algorithm takes a security parameter 𝜆 as input and 
outputs a secret (signing) key 𝑠𝑘 and a public (verification) key 
𝑝𝑘 with associated message space .

• 𝖲𝗂𝗀(𝑠𝑘, 𝑚) ∶ This algorithm takes a secret key 𝑠𝑘 and a message 
𝑚 ∈  as input and outputs a signature 𝜎.
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• 𝖵𝖾𝗋(𝑝𝑘, 𝑚, 𝜎): This algorithm takes a public key 𝑝𝑘, a message 
𝑚 ∈  and a signature 𝜎 as input and outputs a verdict 𝑏 ∈ {0, 1}.

Definition 2 (Secret Key to Public Key Homomorphism). A signature 
scheme 𝛴 provides a secret key to public key homomorphism if there 
exists an efficiently computable map 𝜇 ∶ H → E such that for all 
𝑠𝑘, 𝑠𝑘′ ∈ H it holds that 𝜇(𝑠𝑘 + 𝑠𝑘′) = 𝜇(𝑠𝑘) ⋅ 𝜇(𝑠𝑘′), and for all 
(𝑠𝑘, 𝑝𝑘) ← 𝖦𝖾𝗇(𝜆), it holds that 𝑝𝑘 = 𝜇(𝑠𝑘).

Definition 3 (Key-Homomorphic Signatures). A signature scheme is 
called key-homomorphic signature if it provides a secret key to public 
key homomorphism and an additional PPT algorithm 𝖠𝖽𝖺𝗉𝗍, defined as:

• 𝖠𝖽𝖺𝗉𝗍(𝑝𝑘, 𝑚, 𝜎, 𝛿): Given a public key 𝑝𝑘, a message 𝑚, a signature 
𝜎, and a shift amount 𝛿, this algorithm outputs a public key 𝑝𝑘′
and a signature 𝜎′,

such that for all 𝛿 ∈ H and all (𝑝𝑘, 𝑠𝑘) ← 𝖦𝖾𝗇(𝜆), all messages 𝑚 ∈ 
and all 𝜎 with 𝖵𝖾𝗋𝗂𝖿𝗒(𝑝𝑘, 𝑚, 𝜎) = 1 and (𝑝𝑘′, 𝜎′) ← 𝖠𝖽𝖺𝗉𝗍(𝑝𝑘, 𝑚, 𝜎, 𝛿) it 
holds that
(Pr[𝖵𝖾𝗋(𝑝𝑘′, 𝑚, 𝜎′) = 1] = 1) ∧ (𝑝𝑘′ = 𝜇(𝛿) ⋅ 𝑝𝑘).

Definition 4 (Perfect Adaption). A key-homomorphic signature scheme 
provides perfect adaption if for every 𝜆 ∈ N, every message 𝑚 ∈ , it 
holds that
[𝜎, (𝑠𝑘, 𝑝𝑘),𝖠𝖽𝖺𝗉𝗍(𝑝𝑘, 𝑚, 𝜎, 𝛿)],

where (𝑠𝑘, 𝑝𝑘) ← 𝖦𝖾𝗇(𝜆), 𝜎 ← 𝖲𝗂𝗀(𝑠𝑘, 𝑚), 𝛿 ← H, and
[𝜎, (𝑠𝑘, 𝜇(𝑠𝑘)), (𝜇(𝑠𝑘) ⋅ 𝜇(𝛿), 𝖲𝗂𝗀(𝑠𝑘 + 𝛿, 𝑚))],

where 𝑠𝑘 ← H, 𝜎 ← 𝖲𝗂𝗀(𝑠𝑘, 𝑚), 𝛿 ← H, are identically distributed.

US from [4] is mainly built on the algorithm 𝖠𝖽𝖺𝗉𝗍, and the perfect 
adaption ensures the unlinkable updates (Definition  10) and indistin-
guishable simulation in security proof.

The most basic security requirement for a signature scheme is 
universal unforgeability under No-Message Attacks (UUF-NMA).

Definition 5 (UUF-NMA). A signature scheme 𝛴 is UUF-NMA secure 
iff for all PPT adversary  such that
Pr

[

(𝑠𝑘, 𝑝𝑘) ← 𝖦𝖾𝗇(𝜆), 𝑚∗ ← , 𝜎∗ ← (𝑝𝑘, 𝑚∗, 𝜆) ∶ 𝖵𝖾𝗋(𝑝𝑘, 𝑚∗, 𝜎∗) = 1
]

is negligible in 𝜆.

We also require EUF-CMA security.

Definition 6 (EUF-CMA). A signature scheme 𝛴 is EUF-CMA secure iff 
for any valid PPT adversary  such that

𝖠𝖽𝗏𝖾𝗎𝖿 -𝖼𝗆𝖺
𝛴, (𝜆) ∶= Pr

[

𝖤𝗑𝗉𝖾𝗎𝖿 -𝖼𝗆𝖺
𝛴, (𝜆) = 1

]

is negligible in security parameter 𝜆 where 𝖤𝗑𝗉𝖾𝗎𝖿 -𝖼𝗆𝖺
𝛴, (𝜆) = 1 is defined 

in Fig.  1.

3. Updatable signature with public tokens

This section defines USpt and its security model.

3.1. Defining the updatable signature with public tokens

First, let us review the definition of US with secret tokens in [4].

Definition 7 (Updatable Signature). An US scheme 𝖴𝖲 is a tuple of the 
five PPT algorithms (𝖲𝖾𝗍𝗎𝗉,𝖭𝖾𝗑𝗍, 𝖲𝗂𝗀,𝖴𝗉𝖽𝖺𝗍𝖾,𝖵𝖾𝗋):
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Fig. 1. The EUF-CMA security experiment.
• 𝖲𝖾𝗍𝗎𝗉(𝜆, 𝑛): On input security parameter 𝜆 and the maximum 
number of epochs 𝑛 ∈ 𝑂(2𝜆), the setup algorithm outputs a public 
and secret key pair (𝑝𝑘1, 𝑠𝑘1).

• 𝖭𝖾𝗑𝗍(𝑝𝑘𝑒, 𝑠𝑘𝑒) ∶ On input a public key 𝑝𝑘𝑒 and signing key 𝑠𝑘𝑒 for 
epoch 𝑒 ∈ [𝑛 − 1], the key-update algorithm outputs an updated 
public key 𝑝𝑘𝑒+1, an updated signing key 𝑠𝑘𝑒+1, and an update 
token 𝛥𝑒+1.

• 𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚): On input signing key 𝑠𝑘𝑒 for epoch 𝑒 ∈ [𝑛] and a 
message 𝑚 ∈ , the signing algorithm outputs a signature 𝜎𝑒.

• 𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝛥𝑒+1, 𝑚, 𝜎𝑒): On input an update token 𝛥𝑒+1, a message 𝑚, 
and a signature 𝜎𝑒 for epoch 𝑒 < 𝑛, the update algorithm outputs 
an updated message–signature pair (𝑚, 𝜎𝑒+1) or ⟂.

• 𝖵𝖾𝗋(𝑝𝑘𝑒, 𝑚, 𝜎𝑒): On input public key 𝑝𝑘𝑒, a message 𝑚, and a 
signature 𝜎𝑒 for epoch 𝑒 ∈ [𝑛], the verification algorithm outputs 
a verdict 𝑏 ∈ {0, 1}.

In the US, we have two kinds of signatures: the signature generated 
by 𝖲𝗂𝗀 algorithm and the signatures generated by 𝖴𝗉𝖽𝖺𝗍𝖾𝖲 algorithm. 
We refer to the former signatures (generated by 𝖲𝗂𝗀) as fresh signatures 
and the latter signatures (generated by 𝖴𝗉𝖽𝖺𝗍𝖾𝖲) as updated signatures.

Now, let us introduce the USpt. Intuitively, we want to update a 
signing key 𝑠𝑘𝑒 to an updated key 𝑠𝑘𝑒+1 first, then update signatures 
under outdated key 𝜎𝑒 to new signatures under the updated key 𝜎𝑒+1. 
Since we are trying to update different subjects in the above-mentioned 
two steps, we define two kinds of tokens:

• 𝛿: key-update token;
• 𝛥: signature-update token.

We model the signed message database as a set of messages denoted 
by 𝑀 . The key-update token 𝛿 is generated by algorithm 𝖭𝖾𝗑𝗍 and used 
firstly as an element to compute the following signing key. Then, the 
algorithm 𝖭𝖾𝗑𝗍 takes 𝛿 and 𝑀 as input to compute a signature-update 
token 𝛥. In our definition, the key-update token 𝛿 is only used as an
intermediate for computing the next public-secret key pair. We also need 
to add a verification step in the update signature algorithm 𝖴𝗉𝖽𝖺𝗍𝖾𝖲 to 
limit the signature-update token only to update signed messages in set 
𝑀 .

Definition 8 (Updatable Signature with Public Tokens). An USpt scheme 
𝖴𝖲𝗉𝗍 is a tuple of the PPT algorithms (𝖲𝖾𝗍𝗎𝗉,𝖭𝖾𝗑𝗍, 𝖲𝗂𝗀,𝖴𝗉𝖽𝖺𝗍𝖾𝖲,𝖵𝖾𝗋):

• 𝖲𝖾𝗍𝗎𝗉(𝜆, 𝑛): On input security parameter 𝜆 and the maximum num-
ber of epochs 𝑛 ∈ 𝑂(2𝜆), the setup algorithm outputs a public and 
secret key pair (𝑝𝑘1, 𝑠𝑘1) and an initially empty signed-message 
set 𝑀 .

• 𝖭𝖾𝗑𝗍(𝑝𝑘𝑒, 𝑠𝑘𝑒,𝑀) ∶ On input a public key 𝑝𝑘𝑒, signing key 𝑠𝑘𝑒
for epoch 𝑒 ∈ [𝑛 − 1], and a signed-message set 𝑀 , the next-
key algorithm computes an updated public key 𝑝𝑘𝑒+1, an updated 
secret key 𝑠𝑘𝑒+1, and a signature-update token 𝛥𝑒+1.

• 𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚): On input signing key 𝑠𝑘𝑒 for epoch 𝑒 ∈ [𝑛] and a 
message 𝑚 ∈ , the signing algorithm outputs a signature 𝜎𝑒; 
update the set 𝑀 ← {𝑚} ∪𝑀 .

• 𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝛥𝑒+1, 𝑚, 𝜎𝑒): On input a signature-update token 𝛥𝑒+1, a 
message 𝑚, and a signature 𝜎𝑒 for epoch 𝑒 < 𝑛, the update 
algorithm outputs a message and updated message–signature pair 
(𝑚, 𝜎 ) if 𝑚 ∈ 𝑀 , or ⟂ if 𝑚 ∉ 𝑀 .
𝑒+1
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• 𝖵𝖾𝗋(𝑝𝑘𝑒, 𝑚, 𝜎𝑒): On input public key 𝑝𝑘𝑒, a message 𝑚, and a 
signature 𝜎𝑒 for epoch 𝑒 ∈ [𝑛], the verification algorithm outputs 
a verdict 𝑏 ∈ {0, 1}.

3.1.1. Correctness of 𝖴𝖲𝗉𝗍
For all 𝜆, 𝑛 ∈ N, for all (𝑝𝑘1, 𝑠𝑘1) ← 𝖲𝖾𝗍𝗎𝗉(𝜆, 𝑛), for all 𝑒 ∈

[𝑛 − 1], for all (𝑝𝑘𝑒+1, 𝑠𝑘𝑒+1, 𝛥𝑒+1) ← 𝖭𝖾𝗑𝗍(𝑝𝑘𝑒, 𝑠𝑘𝑒,𝑀), for all 𝜎𝑒 with 
𝖵𝖾𝗋(𝑝𝑘𝑒, 𝑚, 𝜎𝑒) = 1, for all (𝑚, 𝜎𝑒+1) ← 𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝛥𝑒+1, 𝑚, 𝜎𝑒), we have that 
Pr[𝖵𝖾𝗋(𝑝𝑘𝑒′ , 𝑚, 𝜎𝑒′ ) ≠ 1] ≤ 𝜖(𝜆) holds, for all 𝑒′ ∈ [𝑛], where 𝜖(𝜆) = 𝗇𝖾𝗀𝗅(𝜆), 
and we call it perfectly correct if 𝜖(𝜆) = 0.

3.2. Security model

3.2.1. Global state
In our security game/experiments, let 𝑞 ∈ N be the number of 

signature queries and 𝑒 be the identifier of the current epoch. Next, 
we define a global state 𝐒 = (,,):

•  = {((𝑝𝑘𝑒′ , 𝑠𝑘𝑒′ ), 𝛥𝑒′ )𝑒′∈[𝑒]}: all keys and signature-update tokens;
•  = {𝑒′ ∈ [𝑒]}: all epochs where the adversary queried 𝖼𝗈𝗋𝗋𝗎𝗉𝗍(𝑒′);
•  = {(𝑒′, 𝑚, 𝜎𝑒′ )𝑒′∈[𝑒]}: all tuples where the adversary queried 
𝗌𝗂𝗀(𝑚, 𝑒′) in epoch 𝑒′ or 𝗎𝗉𝖽𝖺𝗍𝖾𝗌(𝛥𝑒′ , 𝑚, ⋅) in epoch 𝑒′ − 1.

The set  is initialized by {((𝑝𝑘1, 𝑠𝑘1), 𝛥1)}, where (𝑝𝑘1, 𝑠𝑘1) ← 𝖲𝖾𝗍𝗎𝗉(𝜆, 𝑛)
and 𝛥1 ∶=⟂, and other three sets ,   and  are initialized as empty.

Set  is for recording the key pairs and key-update tokens; set 
 is for recording the epochs that the signing keys of which have 
been obtained by the adversary; set  is also used for recording the 
adversarial signature requests, e.g., logging the signatures queried by 
the adversary and corresponding epochs and messages. Unlike the 
US security model [4], we do not need to record the intermediate 
key-update token 𝛿 since it is not helpful for future signing and key 
updates. In other words, 𝛿 is not used as an intermediate value and is 
not transmitted via any channels; also, our signature-update token is 
publicly queriable.

With access to the global state 𝐒 = (,,), for any epoch 𝑒′ ∈
[𝑒] the adversary is also given the following oracles (𝗌𝗂𝗀, 𝗇𝖾𝗑𝗍, 𝗎𝗉𝖽𝖺𝗍𝖾𝗌,
𝖼𝗈𝗋𝗋𝗎𝗉𝗍, 𝗏𝖾𝗋):

𝗌𝗂𝗀(𝑚, 𝑒′) ∶ On input message 𝑚 and epoch 𝑒′, compute signature 
𝜎𝑒′ ← 𝖲𝗂𝗀(𝑠𝑘𝑒′ , 𝑚), update  ∶=  ∪ {(𝑒′, 𝑚, 𝜎𝑒′ )}, and return 𝜎𝑒′ .

𝗇𝖾𝗑𝗍 ∶ Find (𝑝𝑘𝑒, 𝑠𝑘𝑒) ∈ , compute (𝑝𝑘𝑒+1, 𝑠𝑘𝑒+1, 𝛥𝑒+1) ← 𝖭𝖾𝗑𝗍(𝑝𝑘𝑒, 𝑠𝑘𝑒), 
update  ∶= ∪{((𝑝𝑘𝑒+1, 𝑠𝑘𝑒+1), 𝛥𝑒+1)}, return (𝑝𝑘𝑒+1, 𝛥𝑒+1) and set 
𝑒 ∶= 𝑒 + 1.

𝗎𝗉𝖽𝖺𝗍𝖾𝗌(𝛥𝑒′+1, 𝑚, 𝜎𝑒′ ) ∶ On input a token-signature pair (𝛥𝑒′+1, 𝜎𝑒′ ), 
return ⟂ if 𝗏𝖾𝗋(𝑚, 𝜎𝑒′ ) ≠ 1; otherwise, compute 𝑡 ←

𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝛥𝑒′+1, 𝑚, 𝜎𝑒′ ), return ⟂ if 𝑡 =⟂; otherwise, parse 𝑡 =
(𝑚, 𝜎𝑒′+1), update  ∶=  ∪ {(𝑒′ + 1, 𝑚, 𝜎𝑒′+1)} and return (𝑚, 𝜎𝑒′+1).

𝖼𝗈𝗋𝗋𝗎𝗉𝗍(𝑒′) ∶ On input an epoch 𝑒′ ∈ [𝑒], return ⟂ if 𝑒′ ≥ 𝑒; otherwise, 
return 𝑠𝑘𝑒′  and update  ∶=  ∪ {𝑒′}.

𝗏𝖾𝗋(𝑚, 𝜎𝑒′ ) ∶ On input a message–signature pair (𝑚, 𝜎𝑒′ ), return 𝑏 ∶=
𝖵𝖾𝗋(𝑝𝑘𝑒′ , 𝑚, 𝜎𝑒′ ).
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Fig. 2. USpt-EUF-CMA security experiment.
3.2.2. Leakage profile
Considering the relevant signatures between epochs, different from

[4], our signature-update token is public; therefore, any valid signature 
in any previous epoch can be updated to the current activated epoch 
if one logs all the signature-update tokens from the previous epoch to 
now. In this case, we only need to consider whether the adversary can 
forge a different signature–message pair when given all valid message–
signature pairs obtained from 𝗌𝗂𝗀. This requirement is similar to the 
basic EUF-CMA security of plain signature schemes.

However, we should also restrict the unchallengeable signatures 
when the signing key is leaked. Ideally, one signing key leakage should 
only affect the security in that epoch, which is why we need such an 
updatable property. Therefore, the global state  and  is sufficient 
for recording all adversarial operations considering public tokens. This 
limitation can be presented in the following security definition.

3.2.3. Existential unforgeability under chosen-message attacks (USpt-EUF-
CMA)

Informally, the USpt-EUF-CMA captures the security notions that no 
PPT adversary can forge a valid signature, even given the compromising 
oracles. We say that a USpt scheme 𝖴𝖲𝗉𝗍 is USpt-EUF-CMA-secure if no 
PPT adversary  succeeds in the USpt-EUF-CMA security experiment 
(Fig.  2) with non-negligible probability.

To keep the adversary valid, it cannot query 𝗌𝗂𝗀 on the challenge 
message 𝑚∗ on any epoch before 𝑒∗ since the signature-update tokens 
are public, any signature in an epoch earlier than 𝑒∗ can be updated to 
𝑒∗ by any adversary. On the contrary, signatures in an epoch greater 
than 𝑒∗ cannot be updated to 𝑒∗. In addition, the signing key has to be 
kept secret in epoch 𝑒∗.

Definition 9 (USpt-EUF-CMA security). A USpt scheme 𝖴𝖲𝗉𝗍 is USpt-
EUF-CMA-secure iff for any PPT adversary  the advantage function

𝖠𝖽𝗏𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖴𝖲𝗉𝗍, (𝜆, 𝑛) ∶= Pr

[

𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖴𝖲𝗉𝗍, (𝜆, 𝑛) = 1

]

,

is negligible in 𝜆, where 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖴𝖲𝗉𝗍, (𝜆, 𝑛) is defined in Fig . 2.

3.2.4. Unlinkable updates under chosen-message attacks (USpt-UU-CMA)
Informally, USpt-UU-CMA captures the security notions that no 

PPT adversary can distinguish fresh signatures from updated signa-
tures, even given all signing keys, key/signature-update tokens, and 
signatures from past epochs. We say that an USpt scheme 𝖴𝖲𝗉𝗍 is USpt-
UU-CMA-secure if any PPT adversary  succeeds in the USpt-UU-CMA 
security experiment (Fig.  3) with negligible advantage.

Definition 10 (USpt-UU-CMA security). A USpt scheme 𝖴𝖲𝗉𝗍 is USpt-
UU-CMA-secure iff for any valid PPT adversary  the advantage func-
tion

𝖠𝖽𝗏𝗎𝗌𝗉𝗍-𝗎𝗎-𝖼𝗆𝖺
𝖴𝖲𝗉𝗍, (𝜆, 𝑛) ∶=

|

|

|

|

Pr
[

𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝗎𝗎-𝖼𝗆𝖺
𝖴𝖲𝗉𝗍, (𝜆, 𝑛) = 1 − 1

2

]

|

|

|

|

,

is negligible in 𝜆, where 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝗎𝗎-𝖼𝗆𝖺(𝜆, 𝑛) is defined in Fig.  3.

𝖴𝖲𝗉𝗍,
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4. Construction of USpt from the BLS signature

This section introduces our solution for constructing a USpt from 
the BLS signature. Some impossibility results are shown in Appendix 
A.

4.1. USpt from BLS signatures

The USpt scheme 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is shown in Fig.  4. The signed message 
database for the signer can be more efficiently constructed by replacing 
the input message 𝑚 to the hash of it, 𝐻(𝑚), therefore saving the 
storage of the signer. This method of publishing signature-token will 
not affect the security of key-token since deriving key-token 𝛿𝑒+1 from 
𝐻(𝑚)𝛿𝑒+1  is solving an instance of discrete logarithm problem in group 
G1. In this case, the signer wanting to update the signing keys and 
keep the validity of previously generated signatures must record hashes 
of the messages signed. For every signature update, the signer needs 
to add an element 𝐻(𝑚)𝛿𝑒+1  to the signature-update token 𝛥𝑒+1. We 
deem this difference between the existing US schemes [4] as a new 
scenario application. Indeed, considering a trusted agent to update 
every signature on behalf of the signer, the signature-independent 
token is much easier to use and reduces the bandwidth during the 
process. Signature-dependent tokens still enable efficient updates in a 
trustless or decentralized scenario.

This method is surprisingly related to the notion of signature ag-
gregation [23,24]. In the scenario of signature aggregation, given 𝑛
signatures 𝜎 = (𝜎1, 𝜎2,… , 𝜎𝑛) for message 𝑚 = (𝑚1, 𝑚2,… , 𝑚𝑛) from 
𝑛 signers with public key 𝑝𝑘 = (𝑝𝑘1, 𝑝𝑘2,… , 𝑝𝑘𝑛), the verifier is able 
to verify those 𝑛 signatures together in just one call to aggregate 
verification algorithm 𝖠𝖵𝖾𝗋:

𝖠𝖵𝖾𝗋(𝜎, 𝑝𝑘, 𝑚) ∶

• Compute 𝜎′ = ∏𝑛
𝑖=1 𝛿𝑖.

• Compute ℎ𝑖 ← 𝐻(𝑚𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.
• Return ∏𝑛

𝑖=1 𝑒(ℎ𝑖, 𝑝𝑘𝑖) = 𝑒(𝜎′, 𝑔̃).

In the case of updatable signatures, suppose the signer wants to 
update a signature 𝜎𝑒 = 𝐻(𝑚)𝑠𝑘𝑒  held by a verifier; the signer sends to 
the verifier a signature-update token, which contains a corresponding 
update token (𝐻(𝑚)𝛿𝑒+1 , 𝑝𝑘𝑒+1). The verifier updates the 𝜎𝑒 to 𝜎𝑒+1 =
𝜎𝑒⋅𝐻(𝑚)𝛿𝑒+1 . Note that 𝐻(𝑚)𝛿𝑒+1  is actually a signature under signing key 
𝛿𝑒+1. Finally, the verification algorithm is the same as single signature 
verification: return 𝑒(𝐻(𝑚), 𝑝𝑘𝑒+1) = 𝑒(𝜎𝑒+1, 𝑔̃). This verifies a message 
𝑚 by aggregating two different public keys 𝑝𝑘𝑒+1 = 𝑝𝑘𝑒 ⋅ 𝑔̃𝛿𝑒 .

A basic requirement of BLS aggregation is that messages in that 
aggregation should be distinct. Regarding updatable signatures, the ver-
ifier can verify signatures on the same message in different epochs. This 
is not a problem since we assume the update tokens are authenticated. 
We will show the details in the formal proof.
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Fig. 3. USpt-UU-CMA security experiment.

Fig. 4. 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍.
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4.2. Security of 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍

We first prove that 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is USpt-UU-CMA (Definition  10) se-
cure: the adversary is trying to distinguish signatures generated by 𝖲𝗂𝗀
or 𝖴𝗉𝖽𝖺𝗍𝖾𝖲; we are going to use the fact that the updated signature 
is the same as the signature generated by the corresponding updated 
signing key, e.g., by Definition  11. Then, we prove that 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is 
USpt-EUF-CMA (Definition  9) secure: the adversary is trying to forge a 
valid signature; by introducing a 𝖡𝖫𝖲 forger, the existence of 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍
could lead to a 𝖡𝖫𝖲-signature forgery; therefore, by the security of 𝖡𝖫𝖲, 
we can conclude that 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is USpt-EUF-CMA.

4.2.1. USpt-UU-CMA
Formally, the adversary  is given 𝗌𝗂𝗀, 𝗇𝖾𝗑𝗍, 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, 𝖼𝗈𝗋𝗋𝗎𝗉𝗍, and 

𝗏𝖾𝗋 oracles, and then it returns a target epoch 𝑒∗ and a message 𝑚∗

which it queried 𝜎∗𝑒′ ← 𝑠𝑖𝑔(𝑚∗) in some epoch 𝑒′ < 𝑒∗. In game 0, 
the experiment 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺

𝖡𝖫𝖲-𝖴𝖲𝗉𝗍,  with 𝑏 = 0 returns 𝜎(0) ← 𝖲𝗂𝗀(𝑠𝑘𝑒∗ , 𝑚∗)
to . In game 1, the experiment 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺

𝖡𝖫𝖲-𝖴𝖲𝗉𝗍,  with 𝑏 = 1 returns 
𝜎(1) ← 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝖢𝗁(𝑚∗, 𝑒′, 𝑒∗) to . Note that 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝖢𝗁 calls 𝖭𝖾𝗑𝗍 to 
get the signature-update tokens as input, then the adversary  also 
accesses the tokens (𝛥𝑒′+1, 𝛥𝑒′+2,… , 𝛥𝑒∗ ). Afterwards,  returns 0 if 
𝗎𝗉𝖽𝖺𝗍𝖾𝗌(𝛥𝑒′+1, 𝑚∗, 𝜎∗𝑒′ ) = 0 and 1 otherwise.

Theorem 1. The 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 from Fig.  4 is USpt-UU-CMA secure.

Proof. Formally, we consider the following sequence of games:
Game 0. This is the experiment 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺

𝖡𝖫𝖲-𝖴𝖲𝗉𝗍,  with 𝑏 = 0, where we 
return 𝜎(0) ← 𝖲𝗂𝗀(𝑠𝑘𝑒∗ , 𝑚∗).

Game 1. This is the experiment 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖡𝖫𝖲-𝖴𝖲𝗉𝗍,  with 𝑏 = 1, where we 

return 𝜎(1) ← 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝖢𝗁(𝑚∗, 𝑒′, 𝑒∗). 
Note that the adversary  is given 𝗌𝗂𝗀, 𝗇𝖾𝗑𝗍, 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, 𝖼𝗈𝗋𝗋𝗎𝗉𝗍, and 𝗏𝖾𝗋

oracles, and therefore access to all keys, tokens, and signatures. In
Game 0, let the key pair in epoch 𝑒∗ be (𝑠𝑘𝑒∗ , 𝑝𝑘𝑒∗ ). In Game 1, let 
the key pair in epoch 𝑒′ be (𝑠𝑘𝑒′ , 𝑝𝑘𝑒′ ). We define (𝑠𝑘𝑒∗ , 𝑝𝑘𝑒∗ ) for Game 
1 by 𝖭𝖾𝗑𝗍 and record all keys and signature-update tokens in the global 
state set . Then, algorithm 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝖢𝗁(𝑚∗, 𝑒′, 𝑒∗) ∶ works as follows: 
for 𝑖 = 𝑒′,… , 𝑒∗ − 1, compute 𝜎𝑖+1 ← 𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝛥𝑖+1, 𝑚∗, 𝜎𝑖), where 𝜎𝑖+1 =
𝜎𝑖 ⋅ 𝛥𝐻(𝑚∗),𝑖+1; return 𝜎𝑒∗ .

Since 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is EFUS, therefore the output of 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝖢𝗁 𝜎𝑒∗ = 𝜎(1)

is identical to the signature 𝜎(0). This concludes that 𝖠𝖽𝗏𝗎𝗌𝗉𝗍-𝗎𝗎-𝖼𝗆𝖺
𝖡𝖫𝖲-𝖴𝖲𝗉𝗍,(𝜆, 𝑛) =

0 for any adversary , which concludes the proof of USpt-UU-CMA 
security. □

4.2.2. USpt-EUF-CMA
We reduce USpt-EUF-CMA security of 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 to the EUF-CMA 

security of 𝖡𝖫𝖲1. Specifically, we use the 𝖲𝗂𝗀 oracle of EUF-CMA chal-
lenger in epoch 𝑒∗. Except for this challenge epoch, we have to answer 
𝗌𝗂𝗀, 𝗎𝗉𝖽𝖺𝗍𝖾𝗌, and 𝖼𝗈𝗋𝗋𝗎𝗉𝗍 queries, where the last one will leak the signing 
key to the adversary. Recall that a valid challenge should be formed like 
(𝑚∗, 𝜎∗𝑒∗ , 𝑒

∗), where no 𝗌𝗂𝗀 query on 𝑚∗ for any epoch before 𝑒∗ and no 
𝖼𝗈𝗋𝗋𝗎𝗉𝗍 for epoch 𝑒∗ (Fig.  2).

Except for the challenge epoch 𝑒∗, we simulate the original game 
with knowledge of signing keys and key-update tokens. For the chal-
lenge epoch 𝑒∗, we have to keep the signature from epoch 𝑒∗ − 1 can 
be updated and verified by 𝑝𝑘𝑒∗ . Unlike the scheme, we locally record 
the signed messages, not their hashes, in the global state set . When 
queried to 𝗇𝖾𝗑𝗍 in epoch 𝑒∗ − 1, for each message 𝑚𝑖 ∈ , we first 
query 𝖲𝗂𝗀(𝑚𝑖) to the EUF-CMA challenger of 𝖡𝖫𝖲 associated with 𝑒∗, 
then compute signature-update token 𝛥𝑒∗ ∶= (𝐻(𝑚𝑖), 𝜎𝑖∕𝜎′𝑖 )𝑚𝑖∈ ∪ 𝑝𝑘∗𝑒 , 
where 𝜎𝑖, 𝜎′𝑖  is the signature of 𝑚𝑖 in epoch 𝑒∗, 𝑒∗ − 1 respectively. 

1 The 𝖡𝖫𝖲 scheme can be obtained from modified BLS-based US in Fig. 
A.7 by deactivating 𝖭𝖾𝗑𝗍 and 𝖴𝗉𝖽𝖺𝗍𝖾𝖲 algorithms, with some trivial changes to 
remove epochs. We omit the full description for saving space.
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Similarly, when queried to 𝗇𝖾𝗑𝗍 in epoch 𝑒∗, we first generate a fresh 
key pair (𝑝𝑘𝑒∗+1, 𝑠𝑘𝑒∗+1) to sign every 𝑚𝑖 ∈  using 𝑠𝑘𝑒∗+1, then compute 
signature-update token 𝛥𝑒∗+1 ∶= (𝐻(𝑚𝑖), 𝜎′′𝑖 ∕𝜎𝑖)𝑚𝑖∈𝑀 ∪ 𝑝𝑘𝑒∗+1, where 𝜎′′𝑖
is the signature of 𝑚𝑖 in epoch 𝑒∗ +1. Since 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is EFUS, the fresh 
and updated signatures are indistinguishable. If we get a valid forgery 
(𝑚∗, 𝜎∗𝑒∗ , 𝑒

∗) from adversary , we can output (𝑚∗, 𝜎∗𝑒∗ ) as a forgery to 
EUF-CMA of 𝖡𝖫𝖲.

Theorem 2. The 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 from Fig.  4 is USpt-EUF-CMA secure.

Proof. Formally, let us prove it by the following sequence of games, 
where for each game 𝑖, the success event is denoted by 𝑆,𝑖.

Game 0. This is the original experiment 𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖡𝖫𝖲-𝖴𝖲𝗉𝗍, . The success-

ful forgery event of  is denoted by 𝑆0, where the subscript indicates 
the game. It holds that 

Pr[𝑆,0] = Pr
[

𝖤𝗑𝗉𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖡𝖫𝖲-𝖴𝖲𝗉𝗍, (𝜆, 𝑛) = 1

]

= 𝖠𝖽𝗏𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖡𝖫𝖲-𝖴𝖲𝗉𝗍, (𝜆, 𝑛). (1)

Game 1. This game is identical to Game 0 except that we guess an 
epoch 𝑒 for which  outputs the forgery in epoch 𝑒∗ = 𝑒; we abort if 
𝑒 ≠ 𝑒∗. Assuming 𝑛 is the maximum of epochs, and it holds that 
1
𝑛2

Pr[𝑆,0] ≤ Pr[𝑆,1]. (2)

Game 2. This game is identical to Game 1 except that:
• For call to 𝗇𝖾𝗑𝗍 in epoch 𝑒 − 1, we compute ℎ𝑖 ← 𝐻(𝑚𝑖), 𝜎𝑒,𝑖 ←
𝖡𝖫𝖲.𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚𝑖) for each message (𝑒 − 1, 𝑚𝑖, 𝜎𝑒−1,𝑖) ∈ , and set 
𝛥𝑒 ∶= (ℎ𝑖, 𝜎𝑒,𝑖∕𝜎𝑒−1,𝑖)𝑚𝑖∈ ∪ 𝑝𝑘𝑒.

• For call to 𝗇𝖾𝗑𝗍 in epoch 𝑒, we run (𝑠𝑘𝑒+1, 𝑝𝑘𝑒+1) ← 𝖡𝖫𝖲.𝖦𝖾𝗇(𝜆) to 
obtain a fresh key pair for epoch 𝑒+ 1. For each message 𝑚𝑖 ∈ , 
we compute ℎ𝑖 ← 𝐻(𝑚𝑖) and run 𝜎𝑒+1,𝑖 ← 𝖡𝖫𝖲.𝖲𝗂𝗀(𝑠𝑘𝑒+1, 𝑚𝑖), and 
set 𝛥𝑒+1 ∶= (ℎ𝑖, 𝜎𝑒+1,𝑖∕𝜎𝑒,𝑖)𝑚𝑖∈ ∪ 𝑝𝑘𝑒+1.

• For each call to 𝗌𝗂𝗀 for message 𝑚 in epoch 𝑒, we run 𝜎 ←
𝖡𝖫𝖲.𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚) and add (𝑒, 𝑚, 𝜎) to .

Now we claim Game 2 and Game 1 are indistinguishable; that 
is, they are distributed identically. We generate the signature-update 
tokens by knowing the challenge public key and the messages that need 
to be updated in advance. Note that we do not have to modify the 𝗎𝗉𝖽𝖺𝗍𝖾
oracle since the modified tokens (𝛥𝑒, 𝛥𝑒+1) can be used for signature 
valid updates and can be verified by public keys associated to epochs, 
and the distribution of tokens is identical to the original one. Therefore, 
it holds that 
Pr[𝑆,1] = Pr[𝑆,2]. (3)

Now, we claim that we can associate an EUF-CMA challenger for 
𝖡𝖫𝖲 and construct a valid adversary  for it. In this case, the challenge 
key pair is (𝑠𝑘𝑒, 𝑝𝑘𝑒) where  only gets knowledge of 𝑝𝑘𝑒,  also has the 
access to oracle 𝖡𝖫𝖲.𝖲𝗂𝗀(𝑠𝑘𝑒, ⋅). Recall that a valid EUF-CMA adversary 
 for 𝖡𝖫𝖲 is not allowed to query 𝑠𝑖𝑔(𝑠𝑘𝑒, 𝑚∗), and  fails the game 
if it queried 𝗌𝗂𝗀(𝑚∗, 𝑒′) for message 𝑚∗ in some epoch 𝑒′ ≤ 𝑒 (𝑒 = 𝑒∗) 
or 𝖼𝗈𝗋𝗋𝗎𝗉𝗍(𝑒∗). Now we need to take care of the situation that  has 
all signatures for message 𝑚∗ for epoch 𝑒 < 𝑒′ < 𝑛 and all signing 
keys except epoch 𝑒 are obtained. We w.l.o.g assume that  queried 
𝗌𝗂𝗀(𝑚∗, 𝑒+1) since all subsequent signatures can be obtained via 𝗎𝗉𝖽𝖺𝗍𝖾𝗌. 
Note that before 𝑚∗ is signed, it will not be added to set . No update 
can be done since the signature-update token 𝛥 does not include such a 
pair (𝐻(𝑚∗), ⋅)2. For the signing keys, keys 𝑠𝑘𝑒−1 and 𝑠𝑘𝑒+1 are generated 
independently to 𝑠𝑘𝑒, therefore, they bring no advantage on forge 𝜎∗𝑒 .

Now, we can claim that  is sufficient to act as a valid adversary 
for an EUF-CMA challenger if  non-trivially wins the game. Therefore, 

2 The 𝖡𝖫𝖲-𝖴𝖲𝗉𝗍 is somewhat sesquidirectionally (‘sesqui’ is Latin for one-
and-a-half [25]) updatable: suppose a message is firstly signed in epoch 𝑒, one 
cannot obtain a valid signature in epoch 𝑒′ < 𝑒, but it can update the signature 
to a valid one in epoch 𝑒′′ > 𝑒. The US in [4] is bidirectional updatable.
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 can get from  and output (𝑚∗, 𝜎∗𝑒 ) as a forgery to the EUF-CMA 
challenger of 𝖡𝖫𝖲; that is, 
Pr[𝑆,2] ≤ 𝖠𝖽𝗏𝖾𝗎𝖿 -𝖼𝗆𝖺

𝖡𝖫𝖲, (𝜆). (4)

Putting ((1),(2),(3),(4)) all together, it holds that,
𝖠𝖽𝗏𝗎𝗌𝗉𝗍-𝖾𝗎𝖿 -𝖼𝗆𝖺

𝖡𝖫𝖲-𝖴𝖲𝗉𝗍, (𝜆, 𝑛) ≤ 𝑛2𝖠𝖽𝗏𝖾𝗎𝖿 -𝖼𝗆𝖺
𝖡𝖫𝖲, (𝜆),

which concludes this proof. □

5. Application discussion and future work

5.1. Applications in Web3

First, key rotation is a desirable property for Web3 applications in 
both security and privacy aspects [26]. Users can refresh their private 
keys to eliminate potential leakage threats, such as side-channel attacks 
and phishing websites.

The essence of the US scheme is to update the signature instead 
of re-issuing it, which is helpful in cases where some signatures have 
exceptional value in Web3. Specifically, as signatures are published on 
the blockchain, if there is a need for subsequent continuous verification 
(stored as data on the chain), our solution can help the owners easily 
update their keys and signatures. Application scenarios where key 
rotation can be completed including but not limited to authorship, 
ownership of digital assets, and copyrights of artworks [27]; data 
sharing, delegation [28], and auditing [29]; product tracing [30]. Note 
that the key-rotation property is not helpful for one-shot-verification 
signatures, e.g., verification for transactions, since those signatures have 
completed their mission after being verified by miners.

On an abstract level, let smart contracts on blockchain manage 
the signatures (together with the data or hashes); we consider three 
scenarios when the signer needs to update the signing key: common 
solution, the signer retrieves the data and re-initiate a transaction to 
store the signature signed by the updated key; US solution, the signer 
encrypts and transfers its signature-update token and the smart contract 
performs private computation to update the signatures, e.g., ZEXE sys-
tem [31]; Updatable Signature with public tokens (USpt) solution, the 
signer computes and transfers the public token and the smart contract 
performs regular computation to update the signatures. In the common 
solution, the previous data lost its legitimacy automatically since the 
newer-uploaded one replaced them, which is undesirable in some trace-
ability and time-sensitive applications. Moreover, the signer may need 
to initiate transactions equal to the number of signatures to complete 
the update of all signatures, which will bring great computing and com-
munication consumption. The US solution requires a blockchain that 
supports private computation to complete the update. It is necessary to 
prevent attackers from obtaining tokens in the public blockchain and 
calculating the new signature key, rendering a high on-chain computing 
cost and unable fitting in the mainstream blockchains. Our solution 
(USpt) bypasses those difficulties, which means that the signer does 
not need to re-upload new data entries, and the ledger system does not 
support private computation, preserving the traceability of data entries 
and the practicality of the system. Fig.  5 shows a schematic diagram of 
the solution comparison.

5.2. Future work

This construction of our solution requires the signer to compute 
and distribute every token of legitimate signatures. Here, we refer to
legitimate signatures as the signatures that the signer, not the adversary, 
signed. In this construction, suppose there are 𝑛𝑠 signatures to be up-
dated, the signer needs to publish a string 𝛥ℎ𝑚1 ,𝑒+1

‖𝛥ℎ𝑚2 ,𝑒+1
‖⋯ ‖𝛥ℎ𝑚𝑛𝑠

,𝑒+1
‖𝑝𝑘𝑒+1 for an update, which is 𝑛𝑠 + 1 group elements. Although this 
string is transferred in the authenticated channel, this is equally to 
publish the set of newly generated signatures under the updated signing 
key. The problem is that the signature-update token is linear growth 
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to the number of messages that need to be updated. However, this 
is not a problem specific to this scheme; this token that relies on 
legitimate messages requires the ability to identify legitimate messages, 
and publishing the entire set of legitimate messages is the simplest way. 
One may consider using a bloom filter to improve the performance, 
while the probabilistic nature of the bloom filter makes it inappropriate 
for cryptographic purposes. Considering the aggregate nature of BLS 
signatures, we lost the signature updatability if the token is aggregated 
as (∏𝑛𝑠

1 𝛥ℎ𝑚𝑖 ,𝑒+1)||𝑝𝑘𝑒+1. In this case, the agent can detect if there is any 
signature not sent by the signer in the previous epoch 𝑒; probably, the 
signing key is lost, and a covert attacker made this forgery. Therefore, 
when we want to reduce the communication cost of updates, we may 
violate the idea of signature renewal, but it may be helpful in other 
scenarios. This needs further research.

A popular Web3-style storage is to implement decentralized cloud 
storage of data through the IPFS protocol. Signature can be used as an 
ownership of the data asset in this case. However, the data blocks stored 
by IPFS cannot be changed, and updating is the process of re-publishing 
using common methods. If the chameleon hash [32] can be combined 
to implement the update of ciphertext or signature without changing 
the hash value, the data addressing basis in IPFS will not be changed. 
This will be an important future work to achieve key updatability in 
Web3.

USpt scheme allows the adversarial signer to deny some signatures 
it signed via updates. This is also an intractable problem. The root of 
this problem is that in our model, we place more trust in the signer 
than in a trusted third party. After all, the loss of a private (signing) key 
represents a loss of identity in Web3. The US with secret tokens updates 
all valid signatures in the previous epoch, no matter the legitimate 
or adversarial ones, while preserving non-repudiation. We view this 
difference as a trade-off in trust choice.
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Appendix A. Signature-update token and key-update token

We show why USpt cannot be trivially constructed from the Key-
Homomorphic signature-based US (KH-based US).
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Fig. 5. Comparison of different solutions on key-rotation of signatures.
Fig. A.6. KH-based US.
A.1. Decoupling Update Tokens

Let 𝛴 be a KH signature, the KH-based US is shown in Fig.  A.6. To 
clarify the difference, we define 𝖴𝗉𝖽𝖺𝗍𝖾𝖪(𝛿𝑒+1, 𝑠𝑘𝑒) = 𝑠𝑘𝑒 + 𝛿𝑒+1, which 
is called as a subroutine in 𝖭𝖾𝗑𝗍.

We found that the 𝖭𝖾𝗑𝗍 algorithm first updates the key pair by the 
key-update token 𝛿𝑒+1, and then outputs the signature-update token 
𝛥𝑒+1 which is a tuple including 𝛿𝑒+1. This fact induces a signing key 𝑠𝑘𝑒
to be updated by the signature-update token 𝛥𝑒+1 easily. That is, one 
can compute a transform function 𝑓 such that 𝑓 (𝛥𝑒+1) = 𝛿𝑒+1. Therefore, 
no KH-based US is secure by trivially publicizing the signature-update 
tokens since the adversary can use it to update the signing key and 
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continually forge signatures. We also found this problem is inherent 
in the KH-based US since all those updatabilities are achieved by the 
𝖠𝖽𝖺𝗉𝗍 algorithm (Definition  3), and the security of KH-based US relies 
on the perfect adaptability (Definition  4). Therefore, we should avoid 
computing key-update tokens from the signature-update tokens. There 
are two natural ways to achieve this goal: constructing a USpt without 
𝑓 or constructing a USpt with infeasible computable 𝑓 . The latter one is 
a bit more complex; one can understand that 𝑓 is the inverse of a one-
way function 𝑓−1. Next, we prove that the first idea is not achievable 
when the fresh signatures and the updated signatures are identical, 
and the updatability in the second solution cannot be achieved via the 
perfect adaptability notion.
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A.2. Existence of transform function 𝑓

Note that the perfect adaptability implies the signature obtained 
from 𝖠𝖽𝖺𝗉𝗍 is identical to the signature obtained from 𝖲𝗂𝗀 given the 
same message 𝑚, key pair (𝑠𝑘𝑒, 𝑝𝑘𝑒), and tokens (𝛿𝑒+1, 𝛥𝑒+1). We define 
a notion for US schemes to unveil the equality of fresh and updated 
signatures (EFUS).

Definition 11 (Equality of Fresh and Updated Signatures). A US scheme 
𝖴𝖲 is EFUS, if for any epoch 𝑒, 𝑒 + 1 ∈ [𝑛], signing key 𝑠𝑘𝑒, 𝑠𝑘𝑒+1 ∈ , 
tokens 𝛥𝑒+1 ∈  , 𝛿𝑒+1 ∈  , 𝑟 ∈ , and 𝑚 ∈ , where , , ,
and  are the sets of signing keys, signature-update tokens, key-update 
tokens, randomness and messages, such that 
𝖲𝗂𝗀(𝖴𝗉𝖽𝖺𝗍𝖾𝖪(𝛿𝑒+1, 𝑠𝑘𝑒), 𝑚; 𝑟) = 𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝛥𝑒+1, 𝑚, 𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚; 𝑟)). (A.1)

If the signature scheme is not a unique signature scheme, we obtain 
different signatures on the same message using different randomness 
with overwhelming probability. That is why we explicitly define the 
randomness in the above definition. Now, we are ready to prove the 
impossibility of constructing an EFUS-US without 𝑓 .

Lemma 1. Suppose a US scheme 𝖴𝖲 is EFUS. Given any 𝑚 ∈ , 𝑟 ∈
, 𝑠𝑘𝑒 ∈ , we can rewrite the left side of (A.1) as
𝖲𝗂𝗀𝑚,𝑟(𝖴𝗉𝖽𝖺𝗍𝖾𝖪𝑠𝑘𝑒 (𝛿𝑒+1));

then, function 𝑓 exists, if functions 𝖲𝗂𝗀𝑚,𝑟 and 𝖴𝗉𝖽𝖺𝗍𝖾𝖪𝑠𝑘𝑒  are bijective.

Proof. Because 𝖲𝗂𝗀𝑚,𝑟 and 𝖴𝗉𝖽𝖺𝗍𝖾𝖪𝑠𝑘𝑒  are bijective, therefore they are 
invertible, and their composite function 𝑔 ∶= 𝖲𝗂𝗀𝑚,𝑟◦𝖴𝗉𝖽𝖺𝗍𝖾𝖪𝑠𝑘𝑒  is also 
invertible, the inverse of which is denoted as 𝑔−1 ∶  →  . We 
rewrite the right side of (A.1) as 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝑚,𝑟,𝑠𝑘𝑒 (𝛥𝑒+1), and denote it as 
ℎ(𝛥𝑒+1) for short, where ℎ ∶  →  and we hide 𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚; 𝑟) because 
after fixing 𝑚, 𝑟, 𝑠𝑘𝑒, it is also a constant. Therefore, we can construct 
𝑓 (𝛥𝑒+1) = 𝑔−1(ℎ(𝛥𝑒+1)), where 𝑓 ∶  →  →  . Lemma  1 is 
proved. □

Note that Lemma  1 applies to all eligible US that are in line with 
the assumption, not only KH-based US. However, it is not necessary to 
construct 𝑓 according to the steps in the proof, which may introduce 
discrete logarithm problems. We show the fact that the transform 
function 𝑓 exists in BLS-based US with message-independent updates 
here.

A.2.1. Transform function 𝑓 in BLS-based US with message-independent 
updates

For BLS-based US, the main difference from KH-based US is that the 
update of the signing key uses multiplication instead of addition in the 
𝖴𝗉𝖽𝖺𝗍𝖾𝖪 algorithm.

The message-independent updates property allows the signature-
update algorithm to be run without inputting messages. We modify 
the 𝖭𝖾𝗑𝗍 algorithm from [4] a little bit, from computing multiplication 
𝑠𝑘𝑒+1 ← 𝑠𝑘𝑒 ⋅𝛿𝑒+1 to computing modular multiplication 𝑠𝑘𝑒+1 ← 𝑠𝑘𝑒 ⋅𝛿𝑒+1
mod 𝑝, for signing key size control and succinct proof.

One can easily verify that BLS-based US with message-independent 
updates is EFUS.

Corollary 1. In BLS-US with message-independent updates (Fig.  A.7), 
functions 𝖲𝗂𝗀𝑚 and 𝖴𝗉𝖽𝖺𝗍𝖾𝖪𝑠𝑘 are bijective.

Proof. We prove it by contradiction.
According to the definition, the function 𝖴𝗉𝖽𝖺𝗍𝖾𝖪𝑠𝑘(𝛿) ∶= 𝑠𝑘 ⋅ 𝛿

mod 𝑝, where 𝑠𝑘, 𝛿 ← Z∗
𝑝 , which is typically a prime-order modular 

multiplication, obviously bijective.
Next, we prove that 𝖲𝗂𝗀𝑚 is injective. Given a message 𝑚 (since there 

is no randomness used in 𝖲𝗂𝗀 , we omit 𝑟 for clarity), suppose there 
𝑚,𝑟
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are two different signing keys 𝑠𝑘1 ≠ 𝑠𝑘2, such that 𝖲𝗂𝗀𝑚(𝑠𝑘1) = 𝖲𝗂𝗀𝑚(𝑠𝑘2),
e.g., 𝐻(𝑚)𝑠𝑘1 = 𝐻(𝑚)𝑠𝑘2 . Since 𝐻 ∶  → G1, and every element in G1
can be represented by 𝑔, say 𝐻(𝑀) = 𝑔𝑡, then,

𝐻(𝑚)𝑠𝑘1 = 𝐻(𝑚)𝑠𝑘2 ⇒ 𝑔𝑡⋅𝑠𝑘1 = 𝑔𝑡⋅𝑠𝑘2 ⇒ 𝑔(𝑡⋅𝑠𝑘1)−(𝑡⋅𝑠𝑘2) = 1.

Therefore, (𝑡 ⋅ 𝑠𝑘1) − (𝑡 ⋅ 𝑠𝑘2) = 0, 𝑠𝑘1 = 𝑠𝑘2, which contradicts our 
assumption (note that the computation is not over the cyclic group).

Now we prove that 𝖲𝗂𝗀𝑚 is surjective. Informally, for every element 
in the range of 𝖲𝗂𝗀𝑚, there is always at least one element in the domain 
corresponding to it. We can derive its surjective property of 𝖲𝗂𝗀𝑚 from 
the correctness of the BLS signature: for every valid signature, there 
must be a valid public key verifying it; and in addition, every valid 
public key has a corresponding signing key; therefore, the surjective 
property of 𝖲𝗂𝗀𝑚 follows. □

With the above proof, we can construct the transform function 𝑓 :

𝑓 ∶= 𝖴𝗉𝖽𝖺𝗍𝖾𝖪−1
𝑠𝑘𝑒

◦𝖲𝗂𝗀−1𝑚 ◦𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝑠𝑘𝑒 .

Given a signature 𝜎𝑒 = 𝐻(𝑚)𝑠𝑘𝑒 , we can update it to 𝐻(𝑚)𝑠𝑘𝑒⋅𝛿𝑒+1
by inputting signature-update token 𝛥𝑒+1 = (𝛿𝑒+1, 𝑝𝑘𝑒) to 𝖴𝗉𝖽𝖺𝗍𝖾𝖲𝑠𝑘𝑒 . 
Then we can apply 𝖲𝗂𝗀−1𝑚  to get 𝑠𝑘𝑒+1 = 𝑠𝑘𝑒 ⋅ 𝛿𝑒+1 (which involves 
the discrete logarithm problems on group G1). Finally, one can use 
𝖴𝗉𝖽𝖺𝗍𝖾𝖪−1

𝑠𝑘𝑒
(𝑠𝑘𝑒+1) to get the key-update token 𝛿𝑒+1. Note that Lemma 

1 only implies the existence of 𝑓 , not promising a ‘‘feasible’’ construc-
tion. Indeed, computing the signing key from a signature is always a 
devastating task for the security of a signature scheme.

This fact interestingly implies the possible way to construct a com-
putationally infeasible function 𝑓 , e.g., making it hard to compute (non-
polynomially time computable) the key-update token from a signature-
update token or, making 𝑓−1 one-way.

A.3. One-wayness of transform function 𝑓−1

A straightforward way is to publish the public-key version of the 
key-update token. As explained in Lemma 1 of [6], if there is a KH 
signature scheme such that we can replace the update token 𝛿 in the 
𝖠𝖽𝖺𝗉𝗍 algorithm (Definition  3) with its public key 𝜇(𝛿), this scheme will 
not provide UUF-NMA (5) since any adversary can update a signature 
signed by signing key 𝑠𝑘 to a forged signature that can be verified by 
the public key 𝑝𝑘∗ = 𝜇(𝑠𝑘) ⋅ 𝜇(𝛿) without knowledge of 𝛿.

A key point in the informal proof above is that one can compute 
the signature-update token from any valid signing key and the updated 
(next epoch’s) public key, e.g., 𝜇(𝛿) ← 𝑝𝑘∗ ⋅ 𝜇(𝑠𝑘)−1. This relationship is 
intrinsic for the KH-based US.

We claim this lemma in a more general version, where if there is 
a US scheme with any public signature-update token 𝛥 (in the case 
of KH-based US, 𝛥 ∶= 𝜇(𝛿)) that can update all signatures from one 
epoch to the next, then the signature scheme is not UUF-NMA secure. 
This corollary sufficiently excludes the possibility of building USpt from 
perfect adaptability.

Corollary 2. A US scheme 𝖴𝖲 for which its PPT algorithm 𝖴𝗉𝖽𝖺𝗍𝖾 takes a 
signature-update token 𝛥𝑒+1 ∈  that still satisfies Definition  7 and there 
exists an efficiently computable function 𝑔(𝑝𝑘𝑒, 𝑝𝑘𝑒+1) → 𝛥𝑒+1, then 𝖴𝖲 is 
not UUF-NMA-secure.

Proof. We prove this corollary by constructing an adversary against 
UUF-NMA security of 𝖴𝖲. Let  be an UUF-NMA challenger with 
input 𝑝𝑘𝑒+1 and a target message 𝑚∗, its goal is to output a valid 
signature 𝜎𝑒+1 such that 𝖵𝖾𝗋(𝑝𝑘𝑒+1, 𝑚, 𝜎𝑒+1) = 1.  runs 𝖲𝖾𝗍𝗎𝗉(𝜆, 𝑛)
to get a key pair (𝑝𝑘1, 𝑠𝑘1) and sets (𝑝𝑘𝑒, 𝑠𝑘𝑒) ∶= (𝑝𝑘1, 𝑠𝑘1), then 
computes 𝜎𝑒 ← 𝖲𝗂𝗀(𝑠𝑘𝑒, 𝑚), and finally, outputs a forgery 𝜎𝑒+1 ←

𝖴𝗉𝖽𝖺𝗍𝖾𝖲(𝑔(𝑝𝑘𝑒, 𝑝𝑘𝑒+1), 𝑚, 𝜎𝑒). The success of forgery follows the correct-
ness of updatable signatures. □
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Fig. A.7. BLS-based US with message-independent updates.
An implicit condition is that each signature-update token 𝛥𝑒+1 can 
update all signatures generated in epoch 𝑒 to epoch 𝑒+1. In addition, the 
existence and bijective of 𝑓 implies that each signature-update token is 
bonded to each update of epochs. We need to break this paradigm for 
other possible USpt constructions. Therefore, if the token is only useful 
for updating the message signed by the signer, then this kind of attack 
will fail. The problem is to publish a token that makes the verifiers 
distinguish the signature signed by the signer from the signature signed 
by the adversary, which is similar to the problem of proving if some
elements (signatures) are in a set (signature signed by the signer).
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