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 A B S T R A C T

Federated Learning (FL) is an emerging machine learning paradigm that enables multiple parties to train a 
shared model while preserving data privacy collaboratively. However, malicious clients pose a significant threat 
to FL systems. This interference not only deteriorates model performance but also exacerbates the unfairness of 
the global model caused by data heterogeneity, leading to inconsistent performance across clients. We propose 
C-PFL, a committee-based personalized FL framework that improves both robustness and personalization. In 
contrast to prior approaches such as FedProto (which relies on the exchange of class prototypes), Ditto (which 
employs regularization between global and local models), and FedBABU (which freezes the classifier head 
during federated training), C-PFL introduces two principal innovations. C-PFL adopts a split-model design, 
updating only a shared backbone during global training while fine-tuning a personalized head locally. A 
dynamic committee of high-contribution clients validates submitted updates without public data, filtering low-
quality or adversarial contributions before aggregation. Experiments on MNIST, Fashion-MNIST, CIFAR-10, 
CIFAR-100, and AGNews show that C-PFL outperforms six state-of-the-art personalized FL baselines by up 
to 2.89% in non-adversarial settings, and by as much as 6.96% under 40% malicious clients. These results 
demonstrate C-PFL’s ability to sustain high accuracy and stability across diverse non-IID scenarios, even with 
significant adversarial participation.
1. Introduction

Federated learning (FL) is a distributed machine learning paradigm 
introduced by Google in 2017 (McMahan et al., 2017), designed to 
enable multiple participants to collaboratively train a shared model 
without transferring their raw data to a central server. Instead, model 
training is performed locally on each client device, and only model 
updates are exchanged, thereby preserving data privacy and reduc-
ing regulatory concerns associated with sensitive information. This 
privacy-by-design property makes FL particularly attractive in domains 
such as healthcare, where medical records cannot be shared due to 
confidentiality requirements; finance, where transaction histories are 
highly sensitive; and the Internet of Things (IoT) (Li et al., 2020a), 
where numerous edge devices generate privacy-critical data. Beyond 
privacy, FL offers the ability to leverage diverse and geographically 
distributed datasets, potentially improving model generalization across 
heterogeneous environments. 

The core idea of Federated Learning (FL) is to retain data lo-
cally on client devices instead of uploading it to a centralized server, 
with Federated Averaging (FedAvg) (McMahan et al., 2016) being a 
commonly used aggregation method. Fig.  1 illustrates the overall FL 
architecture. (1) The typical FL training process begins with Model 
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Initialization, where the central server initializes and distributes the 
global model to all participating clients. (2) This is followed by Local 
Training, during which each client trains the model exclusively on 
its local device data without sharing the raw data. (3) Subsequently, 
clients perform Model Update Uploading, returning only their locally 
updated model parameters to the server. (4) The server then conducts 
Global Aggregation, typically using weighted averaging, to integrate 
these updates into a new global model. This entire sequence forms an 
Iterative Process: the updated global model is redistributed to clients for 
further local training, and the cycle repeats until model convergence is 
achieved. This paradigm enables collaborative learning that preserves 
privacy over distributed data. 

Despite its advantages, FL faces several challenges. First, data across 
clients is often non-identically and independently distributed (non-
IID), which can lead to significant variations in local model updates, 
thus impairing the convergence and stability of the global model. 
Additionally, balancing global generalization and local personalization 
remains a core challenge. Due to the diverse characteristics of the data 
and the task requirements between clients, a global model that is one 
size fits all often does not meet personalized needs (Dinh et al., 2020; 
Reisizadeh et al., 2019).
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Moreover, the decentralized nature of FL, where only model updates 
are shared (not raw data), inherently exposes the system to a spectrum 
of adversarial threats orchestrated by malicious clients. These adver-
saries can intentionally manipulate the training process to compromise 
the global model’s integrity through various means:

• Data/Model Poisoning Attacks: Malicious clients can manipulate 
their local training data or craft malicious model updates to 
introduce biases, corrupt the learning objective, or degrade the 
global model’s performance on specific tasks or inputs. This work 
primarily addresses input data poisoning attacks, aiming to de-
tect and mitigate their impact during the federated aggregation 
process.

• Backdoor Attacks: Attackers can embed hidden triggers into their 
local data or model updates. The resulting global model behaves 
normally on clean inputs but misclassifies inputs containing the 
specific trigger pattern.

• Byzantine Attacks: Malicious clients (acting as ‘‘Byzantine’’ nodes) 
can arbitrarily deviate from the protocol. This includes sending 
fabricated data distributions, arbitrarily corrupted model updates 
(e.g., random noise, sign-flipped gradients), or selectively drop-
ping communications to disrupt convergence or steer the model 
toward a malicious state.

This paper focuses on the prevalent and critical challenge of poi-
soning attacks in the context of FL. These attacks pose significant risks 
to the reliability and trustworthiness of the federated learning process, 
and robust defenses are essential.

To solve the problem that the unified global model cannot meet the 
personalized needs of each node due to data heterogeneity in federated 
learning, this paper proposes a committee-based personalized federated 
learning algorithm (C-PFL). The algorithm aims to achieve model per-
sonalization and defend against poisoning attacks. C-PFL introduces a 
committee mechanism, in which the committee node verifies the model 
updates submitted by other nodes in each training round (without the 
need for a public dataset), ensuring that only qualified updates partici-
pate in global aggregation. This enables most honest nodes to enhance 
each other and jointly improve the global model, while ignoring a small 
number of incorrect or malicious updates, thereby maintaining high 
stability under malicious attacks and only adding a small amount of 
verification overhead. To better adapt to the unique data distribution 
and task requirements of each node, C-PFL divides the model into a 
public part (base) and a personalized part (head). During the training 
process, nodes only upload the base part for global aggregation; after 
obtaining the global public model, each node fine-tunes the head part 
locally, ultimately achieving a highly personalized model.

In summary, our main contributions are as follows:

• Committee-based robust personalized FL framework: We pro-
pose C-PFL, which integrates a split-model design with a dynamic 
committee mechanism to enhance both robustness and person-
alization in federated learning. The backbone is trained globally 
while the head is personalized locally.

• Dynamic committee selection and thresholding: A
contribution-based selection strategy forms the committee, and 
a dynamically updated accuracy threshold filters low-quality or 
malicious updates without requiring public datasets.

• Comprehensive evaluation under non-IID and adversarial 
settings: Extensive experiments on five benchmark datasets
demonstrate that C-PFL outperforms six state-of-the-art person-
alized FL methods, achieving up to 2.89% higher accuracy in 
benign conditions and up to 6.96% under 40% malicious clients.
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2. Related work

FedAvg (McMahan et al., 2016) is one of the most widely adopted 
algorithms in federated learning. It aggregates model updates from all 
clients using weighted averaging, typically based on the number of 
local samples, to generate a new global model. However, in real-world 
scenarios, the data across clients is often heterogeneous (non-IID). In 
such cases, the performance of FedAvg tends to degrade significantly 
due to the divergent directions of local updates, leading to unstable 
global model training (Oh et al., 2021). As a result, the global model 
often fails to generalize well to clients whose local data distributions 
differ substantially from the overall average. For practical applications 
that frequently deal with non-IID local datasets, relying on a single 
global model is usually insufficient (Tan et al., 2022b).

In recent years, personalization has gained significant attention 
to address statistical heterogeneity and enable customized models 
in federated learning. Existing personalized federated learning (PFL) 
methods can be broadly categorized into the following four types: 
(1) local fine-tuning-based personalization, (2) knowledge distillation-
based personalization, (3) model splitting-based personalization, and 
(4) regularization-based personalization.

2.1. Local fine-tuning-based personalization

Through differentiated training strategies, each client can obtain 
a model that better fits its data characteristics, thereby improving 
personalization and avoiding the generalization drop caused by data 
heterogeneity. FedPHP (Li et al., 2021d) emphasizes the importance of 
historical personalized models. It proposes the Inherited Private Model
(HPM), which temporally ensembles each client’s historical person-
alized models and uses them to supervise the next round of global 
personalization. APFL (Deng et al., 2020) presents an adaptive person-
alized federated learning algorithm that derives generalization bounds 
for the mixture of local and global models and learns the optimal 
mixing parameter. Thus, each client contributes to the global model 
while training its local model. FedSAE (Li et al., 2021a) is an adaptive 
FL system that accelerates the convergence of the global model by adap-
tively selecting clients with higher local training loss in each round. 
To address the challenges of statistical heterogeneity, FedALA (Zhang 
et al., 2023b) supports client models in personalized FL by capturing 
informative representations required by the global model.

FedCA-TDD (Ma et al., 2021) modifies the aggregation strategy of 
the global model: the feature extraction layer is still weighted by the 
number of local samples, while the classification layer is aggregated 
based on the contribution of each class.

APPLE (Luo and Wu, 2022), FedFomo (Zhang et al., 2020), and
FedAMP (Huang et al., 2021) enable model personalization through 
client-to-client collaboration. APPLE adaptively adjusts the degree of 
model sharing between clients and dynamically balances the focus 
between global and local objectives. It learns how much each client 
can benefit from others, thereby mitigating the challenges posed by 
non-IID datasets. FedFomo computes an optimal weighted combination 
of peer models for each client, allowing them to collaborate only with 
relevant peers. This strategy optimizes models individually rather than 
relying on a single global average, offering greater personalization 
flexibility. FedAMP promotes peer-to-peer collaboration among clients 
with similar data distributions through message passing, enhancing 
cooperative training among similar clients.

FedSAE (Li et al., 2021a) and TiFL (Chai et al., 2020) improve the 
global model via intelligent client selection. FedSAE adaptively selects 
clients with high local loss for each training round, thus accelerating 
convergence. TiFL organizes clients into tiers based on training perfor-
mance and adaptively selects participating clients from the same tier to 
optimize accuracy and training efficiency.
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Fig. 1. Framework of traditional federated learning.
2.2. Knowledge distillation-based federated learning

These methods leverage global semantic knowledge to explicitly 
align local and global feature representations, resulting in improved 
representations. Additionally, they quantify the benefits of combining 
classifiers from different clients and formulate an optimization problem 
to estimate the optimal weights. This approach enhances generalization 
through global knowledge and enables effective collaboration among 
local classification heads.

FedDistill (Jeong et al., 2018) introduces two algorithms—
Federated Distillation (FD) and Federated Augmentation (FAug). FD 
significantly reduces communication overhead compared to traditional 
FL, especially for large models. FAug complements this by jointly 
training a generative model to augment local data. PCTPF (Wang 
et al., 2025) integrates knowledge distillation with model fusion in 
a two-stage training process. In the first stage, the server aggregates 
client knowledge into a teacher model via regularized KD and distills 
it into a student model for local training to alleviate client drift. In 
the second stage, clients employ an adaptive weighting mechanism 
to fuse the global and local models, yielding personalized models for 
improved performance. FedProto (Tan et al., 2022a) enables clients 
and server communication via abstract class prototypes rather than 
gradients. These prototypes are aggregated on the server and sent 
back to clients to guide local training. FedPAC (Xu et al., 2023) 
enhances model personalization by aligning local and global features 
and promoting cooperation among classification heads. It improves rep-
resentation learning by incorporating global knowledge and optimizing 
the combination of classifiers for each client.

2.3. Model splitting-based federated learning

This approach partitions the model into multiple components, al-
lowing each client to train only the parts relevant to specific data 
features or input variables, or to handle certain elements in a special-
ized manner. A series of methods—LG-FedAvg (Liang et al., 2020), 
FedGH (Yi et al., 2023), GPFL (Zhang et al., 2023a), and FedRep
(Collins et al., 2021)—highlight the importance of both global and local 
information, aiming to train a personalized model alongside a shared 
global model.

LG-FedAvg reduces communication overhead and improves training 
scalability and efficiency by jointly learning compact local representa-
tions and a global model. FedGH and FedRep recognize that although 
data in federated settings is often non-IID, clients usually share a 
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common global feature representation. At the same time, statistical 
heterogeneity primarily exists in the label space. These methods lever-
age local data representations submitted by clients to jointly train a 
generalized global prediction head and personalized local heads. GPFL 
focuses on feature extraction in personalized FL by simultaneously 
learning global and personalized features on each client.

FedBABU (Oh et al., 2021) and FedPer (Arivazhagan et al., 2019) 
specifically focus on personalized models by decomposing the entire 
network into a backbone (extractor) responsible for general represen-
tation learning and a head (classifier) tailored for personalization. In 
FedPer, the backbone and head are trained during federated learning. 
In contrast, FedBABU only updates the backbone in the federated phase 
and fine-tunes the head during evaluation to achieve personalization.

FedGC (Niu and Deng, 2022) addresses privacy concerns in face 
recognition tasks. Traditional decentralized FL methods share all model 
parameters across clients, which may lead to privacy leakage in facial 
recognition scenarios. FedGC introduces a softmax-based regularizer 
that injects inter-client gradient terms to correct class embedding gra-
dients. This correction is applied from a backpropagation perspective 
to enhance privacy preservation. FedGen (Zhu et al., 2021) proposes a 
data-free distillation framework that transfers knowledge to FL clients. 
A generative model is trained on the FL server and distributed to clients. 
Each client uses the distilled knowledge as an inductive bias to generate 
enhanced representations in the feature space, thereby improving local 
learning performance.

2.4. Regularization-based federated learning

Model regularization is a widely adopted strategy in machine learn-
ing to prevent overfitting and improve convergence. In federated learn-
ing (FL), regularization can be employed to constrain the influence of 
local updates, thereby enhancing the stability and generalizability of 
the global model. This, in turn, facilitates the development of better 
personalized models (Tan et al., 2022b).

pFedMe (T. Dinh et al., 2020) addresses the limitations in global 
model performance arising from statistical heterogeneity across clients 
by employing Moreau Envelopes as a regularized local loss function. 
MOON (Li et al., 2021b) aims to minimize the divergence of repre-
sentations between local and global models, effectively reducing the 
divergence of weights, while simultaneously maximizing the distance 
between current and previous local model representations to accelerate 
convergence. This novel approach enables clients to learn represen-
tations closer to the global model, thereby mitigating local model 
inconsistency.
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FedProx (Li et al., 2020b) and Ditto (Li et al., 2021c) improve FL 
performance by introducing explicit regularization between global and 
local objectives. FedProx adds a proximal term to the local objective 
to ensure client updates do not drift too far from the global model. 
This additional constraint improves convergence under non-IID data 
distributions. Ditto introduces a regularization strategy to bridge the 
gap between global and personalized models, aiming to provide bet-
ter fairness and robustness, especially for underrepresented or highly 
heterogeneous clients.

Our proposed C-PFL belongs to model splitting-based federated 
learning. Designed for federated systems with potentially malicious or 
unreliable participants, C-PFL integrates a committee-based mechanism 
that limits the impact of such participants on the global model, thereby 
enhancing robustness against adversarial threats. Moreover, each client 
must maintain consistency only in the base part of the model, while 
being free to customize its head, allowing for effective personalization. 
A comparative summary of the optimization strategies used in various 
federated learning algorithms is presented in Table  1.

To provide a clearer understanding of how our proposed C-PFL dif-
fers from existing federated learning methods, we summarize and com-
pare the key characteristics of FedAvg, FedGH, FedProto, and C-PFL in 
terms of model architecture, training strategy, and aggregation mech-
anism in Table  2. While FedAvg adopts a monolithic global model and 
simple averaging, and FedProto relies on prototype transmission, our 
method presents a novel committee-based validation mechanism and a 
split model structure, offering better personalization and robustness.

2.5. Other advances in federated learning

Recent developments in federated learning have introduced novel 
directions that complement robustness and personalization, including 
zero-trust security modeling, transformer-based domain adaptation, 
structured generalization, and data-free robustness enhancement.

FedKCSS (Sun et al., 2025) proposed a zero-trust FL framework with 
dynamic trust evaluation and knowledge transfer, which complements 
our committee-based validation as a performance-driven trust mech-
anism. FedDAvT (Lei et al., 2023) applied transformer-based domain 
adaptation for Alzheimer’s diagnosis, demonstrating the potential of 
attention mechanisms in FL.

FedPartWhole (Radwan and Shehata, 2025) improves domain gen-
eralization through consistent part-whole hierarchies, emphasizing
structural invariance across clients. DFRD (Wang et al., 2023), a data-
free robustness distillation method that aligns with our goal of defend-
ing against adversarial clients and could enhance committee evaluation 
in future extensions.

DGFedRS (Di et al., 2025c) employs diffusion augmentation and 
guided denoising to enhance the diversity of the latent data distribu-
tion, suppress noise, and retain user-specific preferences in sequential 
recommendation tasks. FedRL (Di et al., 2025b) introduces a rein-
forcement learning-based framework with a Reinforcement Selector 
for adaptive client participation and a Hypernet Generator to reduce 
communication costs, enabling efficient deployment and model up-
dates. PCFedRec (Di et al., 2025d) captures fine-grained heteroge-
neous dependencies in multi-behavior consumer data via a Fine-grained 
Transformation Module, complemented by a Hybrid Information Shar-
ing mechanism to balance personalization and shared representation 
learning. FedMS (Di et al., 2025a) addresses privacy-preserving click-
through rate prediction by combining a Slimify Module for model 
compression and a Feature Sharpening Module to enhance embedding 
importance, achieving high accuracy with reduced computation and 
communication overhead.

These recent methods reflect the rapid progress in trustworthy and 
adaptive FL. Compared to them, C-PFL is distinguished by its emphasis 
on committee-driven robustness and architecture-level personalization.
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Table 1
Summary of Federated Learning Algorithm Optimization.
 Approach Global 

model
Model 
update

Local 
training

Client 
selection

 

 APFL (Deng et al., 2020) × × ✓ ×  
 PCTPF (Wang et al., 2025) ✓ ✓ ✓ ×  
 TiFL (Chai et al., 2020) × × × ✓  
 FedDistill (Jeong et al., 2018) ✓ × ✓ ×  
 FedGH (Yi et al., 2023) ✓ × × ×  
 LG-FedAvg (Liang et al., 2020) × ✓ × ×  
 FedRep (Collins et al., 2021) × ✓ ✓ ×  
 C-PFL ✓ ✓ ✓ ✓  

3. Motivation

In federated learning (FL), multiple participants train a global model 
collaboratively without directly exchanging their local data. While this 
approach effectively preserves data privacy, it also introduces several 
challenges, such as ensuring the quality of local model updates and 
defending against potential malicious behavior or attacks. To address 
these issues, this work presents a committee-based verification mechanism, 
designed to filter and evaluate local updates submitted by clients. 
This mechanism helps eliminate low-quality or adversarial updates, 
thereby enhancing the performance, security, and reliability of the 
global model.

Due to variations in data distributions and computational resources 
among participants, the quality of the locally trained models can differ 
significantly. For instance, some clients may possess limited data, suffer 
from non-uniform data distributions, or fail to perform sufficient local 
training iterations, resulting in suboptimal model updates. If such up-
dates are incorporated into the global model without proper screening, 
they may degrade overall performance.

A representative example can be found in medical applications, 
where data distributions differ across hospitals. A hospital with nar-
rowly scoped data may produce a local model update that fails to 
generalize to other hospitals, ultimately hindering the performance of 
the global model. The committee mechanism assesses the effectiveness 
of these updates and ensures that only those that contribute positively 
to global performance are aggregated. This process mitigates the neg-
ative impacts of data imbalance and contributes to a more stable and 
generalizable global model.

One of the core challenges in FL is maintaining the global model’s 
security while enabling collaborative training across decentralized par-
ticipants. Given the open and distributed nature of FL, some clients 
may unintentionally or maliciously submit harmful model updates. 
Adversaries, for example, may launch poisoning attacks by deliberately 
modifying local models to corrupt the global model during aggregation.

3.1. Model separation

To defend against such threats, C-PFL adopts a partial update strat-
egy, where clients submit only the base part (i.e., feature extractor) 
of their models during training. This limits the influence of malicious 
clients on other participants’ models. By preserving the classification 
head locally and only aggregating the shared base, the robustness of 
the model is enhanced.

Nasr et al. (2019) demonstrate that membership inference attacks 
can exploit gradients or parameters in the final layers to identify 
whether a specific data sample was used in training. By keeping the 
classification head entirely local, C-PFL effectively reduces exposure 
to these types of inference attacks. Since the head never leaves the 
client device, an attacker observing shared model updates or gradients 
cannot directly reconstruct label distributions or sample identities, thus 
improving protection against both membership inference and label 
leakage attacks in Fig.  2. 
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Table 2
Comparison of representative FL methods in terms of model architecture, training strategy, and aggregation mechanism.
 Method Model architecture Training strategy Aggregation mechanism  
 FedAvg Monolithic global model Train full model on local data Weighted average of all client 

updates
 

 FedGH Global backbone + shared head Full model training per round Aggregates shared head with 
class-wise weights

 

 FedProto Shared encoder + class prototypes Local training guided by prototypes Server aggregates class prototypes 
 C-PFL Shared backbone + local head Backbone-only training during FL 

phase; local head fine-tuned post FL
Committee-based validation 
before aggregation; qualified 
backbone updates only

 

Fig. 2. Accuracy comparison between feature extraction layer and entire 
model update.

3.2. Committee mechanism

The committee performs inspection and evaluation on each model 
update submitted by participating clients, aiming to identify updates 
that exhibit potentially adversarial or abnormal behavior. The commit-
tee rejects suspicious or malicious updates, preventing them from being 
incorporated into the global model aggregation process and thereby 
safeguarding the model from adversarial interference.

Beyond defending against intentional attacks, the committee mech-
anism is also effective in mitigating unintentional errors or faults. 
For example, updates from clients with low-quality data or hardware 
malfunctions may deviate significantly from the expected learning tra-
jectory. In such cases, the committee serves as a filtering and correction 
mechanism, ensuring that only reliable updates contribute to the global 
model, thus maintaining its integrity and stability.

4. C-PFL algorithm

This section introduces the C-PFL algorithm, designed for federated 
learning with non-IID data. The C-PFL workflow is illustrated in Fig.  3:

1. Global Model Broadcast: At the beginning of each training 
round, the server broadcasts the current global model 𝑤(𝑡)

global to 
all training nodes.

2. Local Model Training: Each training node (i.e., device or client) 
uses its local dataset to train the received global model, produc-
ing an updated local model 𝑤(𝑡+1)

i .
3. Submission of Local Model: Each training node submits the 
base part of its updated local model 𝑤(𝑡+1)

i,base to the committee 
nodes.

4. Filtering and Evaluation: The committee nodes evaluate the 
local models received based on a predefined performance thresh-
old:
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑤𝑏𝑎𝑠𝑒) ≥ 𝑎𝑐𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This evaluation is conducted 
using a validation set on the committee nodes. Only models that 
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meet or exceed the threshold are considered for updating the 
global model. Those that fail the threshold are discarded and 
excluded from aggregation.

5. Global Model Update: On the server side, selected local models 
are aggregated to produce a new global model 𝑤(𝑡+1)

global. This new 
model will be sent to all training nodes in the next iteration to 
start a new training cycle.

6. Committee Update: After each round of federated learning, the 
committee nodes are also updated to prepare for the next round 
of model evaluations.

4.1. Model verification

In C-PFL, the committee must verify local models submitted by 
clients in each round before they can be used in global model aggre-
gation. Suppose there are 𝑁 clients, each owning a private training 
dataset 𝐷1, 𝐷2,… , 𝐷𝑁 , which are heterogeneous (non-IID and imbal-
anced). Among these 𝑁 clients, 𝑀 serve as training nodes and 𝐶 as 
committee nodes, with 𝑁 = 𝑀 + 𝐶.

For a local model 𝑤(𝑘)
𝑖  submitted by training node 𝑖 in round 𝑘, 

the committee nodes evaluate it using their local data and produce 
validation accuracies 𝑎1, 𝑎2,… , 𝑎𝐶 . The local model is only eligible 
for global aggregation if the final score 𝐴𝑖 meets the threshold 𝐴𝑖 ≥
𝑎𝑐𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. The final score 𝐴𝑖 is computed as: 
𝐴𝑖 = Average(𝑎1, 𝑎2,… , 𝑎𝐶 ) (1)

Using the average ensures a more robust assessment of the overall 
performance of the local model, reducing the risk of biased evaluations 
caused by the extreme results of the individual committee nodes. 
In a heterogeneous data environment, committee nodes usually have 
diverse data distributions and class compositions, significantly affecting 
model validation.

For instance, suppose committee node 𝐶𝑗 primarily handles classi-
fication tasks for class 𝑡. If training node 𝑖’s model 𝑤(𝑘)

𝑖  is trained on 
data lacking samples of class 𝑡, the model may perform poorly when 
validated on 𝐶𝑗 ’s data, resulting in a low accuracy score. This scenario 
often arises due to imbalanced or non-diverse training data.

In contrast, if the data distribution of the training node 𝑖 closely 
matches that of the committee node 𝐶𝑗 , particularly with a large 
proportion of class 𝑡, the model may achieve higher precision during 
validation. However, this could reflect class-specific advantages rather 
than true general performance across the global dataset.

By averaging validation results from multiple committee nodes, the 
evaluation process becomes more balanced and comprehensive, effec-
tively mitigating the influence of individual data biases and ensuring 
that models are better suited to diverse data distributions.

4.2. Model update

In C-PFL, each client model is explicitly divided into two compo-
nents: a shared feature extractor (the backbone) and a personalized 
classifier (the head). Formally, the full model 𝑓 (𝑥) can be expressed 
as:

𝑓 (𝑥;𝑤 ,𝑤 ) = ℎ(𝑥;𝑤 )◦𝑔(𝑥;𝑤 ),
base head head base
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Fig. 3. Framework of C-PFL.
where:

• 𝑤base denotes the parameters of the backbone 𝑔(⋅), which con-
sists of the convolutional and intermediate fully connected layers 
responsible for general feature extraction;

• 𝑤head denotes the parameters of the head ℎ(⋅), which performs 
classification and is tailored to each client’s local data distribu-
tion;

• ◦ denotes function composition, i.e., the output of 𝑔 is used as the 
input to ℎ, so 𝑓 (𝑥) = ℎ(𝑔(𝑥)).

Prior studies have shown that training the entire model or fixing 
only the head yields comparable performance, whereas fixing the base 
significantly degrades performance (Oh et al., 2021). Therefore, in the 
local training phase, the head remains unchanged, and training nodes 
only update the base part of the model. After each training round, 
only the weights of the base are submitted. This approach enables the 
efficient training of a high-quality global base model.

During the federated training phase, only the shared backbone 
parameters 𝑤base are updated collaboratively across clients. The head 
𝑤head remains fixed and is updated only during local fine-tuning after 
the global model convergence. This design enables effective personal-
ization while maintaining a stable and generalizable global representa-
tion.

Once global training is complete, the head of the local model is 
no longer fixed. Each node can fine-tune the head using local data, 
achieving personalized adaptation. This strategy leverages the globally 
shared base for general feature extraction, allowing the head to be 
optimized locally. As a result, the model can better fit the specific data 
distribution of each client, improving both personalization and overall 
performance.

The C-PFL update procedure is outlined in Algorithm 1. The server 
first initializes the global model 𝑤(0)

global and the initial committee 𝐶 (0)

(Lines 1–2). Then, the selected training nodes perform local updates 
based on the global model (Lines 4–6). Each node trains locally and 
submits its updated base part. Afterward, the committee verifies the 
submitted local models (Lines 7–9), filtering out those that do not meet 
the criteria.

The verification process by the committee includes:

1. Model Loading: Committee node 𝐶𝑗 loads the submitted model 
𝑤(𝑖) .
𝑏𝑎𝑠𝑒

6 
2. Local Inference: The model 𝑤(𝑖)
𝑏𝑎𝑠𝑒 is evaluated on the local 

dataset 𝐷𝑗 , and the performance metric is calculated as: 

𝑉𝑗 (𝑤
(𝑖)
𝑏𝑎𝑠𝑒, 𝐷𝑗 ) = Acc(𝑤

(𝑖)
𝑏𝑎𝑠𝑒, 𝐷𝑗 ) (2)

Acc(𝑤(𝑖)
𝑏𝑎𝑠𝑒, 𝐷𝑗 ) =

1
𝑁𝑗

𝑁𝑗
∑

𝑘=1
I
(

𝑓𝑤(𝑖)
𝑏𝑎𝑠𝑒

(𝑥𝑘) = 𝑦𝑘

)

(3)

where Acc denotes the accuracy function. 𝑓𝑤(𝑖)
𝑏𝑎𝑠𝑒

(𝑥𝑘) denotes the 
prediction (i.e., the argmax output) of model 𝑤(𝑖)

𝑏𝑎𝑠𝑒 on the input 
𝑥𝑘. The function I(⋅) is an indicator function that returns 1 if 
the condition inside holds true, and 0 otherwise. 𝑁𝑗 represents 
the number of data samples on the local dataset 𝐷𝑗 of commit-
tee node 𝐶𝑗 . This equation reflects the proportion of correctly 
predicted samples on the local data of the committee node.

3. Result Aggregation: Each committee node 𝐶𝑗 sends its evalu-
ation result 𝑉𝑗 to an aggregator, which computes the average 
score.

4. Decision: If the average score exceeds a predefined threshold 
𝜏, the model 𝑤(𝑖)

𝑏𝑎𝑠𝑒 passes the verification and is included in the 
global model update; otherwise, it is rejected.

𝑤(𝑖)
𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 ←

{

𝑤(𝑖)
𝑏𝑎𝑠𝑒, if 1𝑚

∑𝑚
𝑗=1 𝑉𝑗 (𝑤

(𝑖)
𝑏𝑎𝑠𝑒, 𝐷𝑗 ) ≥ 𝜏

∅, otherwise
(4)

where 𝑤(𝑖)
𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 denotes the qualified backbone update from client 𝑖

that will be used in aggregation, and 𝑤(𝑖)
𝑏𝑎𝑠𝑒 is the backbone update 

submitted by client 𝑖. The function 𝑉𝑗 (𝑤(𝑖)
𝑏𝑎𝑠𝑒, 𝐷𝑗 ) measures the validation 

accuracy of 𝑤(𝑖)
𝑏𝑎𝑠𝑒 on committee member 𝑗’s local validation dataset 𝐷𝑗 , 

and 𝑚 is the total number of committee members in the current round. 
The parameter 𝜏 represents the current accuracy threshold, dynamically 
updated as described in Eq.  (4). If the mean validation accuracy across 
all committee members meets or exceeds 𝜏, the update is accepted; 
otherwise, it is discarded (∅). 

The server updates the global model by performing a weighted 
aggregation of the qualified local models based on the amount of data 
each client possesses (Line 10). Since the C-PFL aggregation process 
focuses solely on the feature extraction component of the model, the 
weight assigned to each local model is proportional to the size of the 
client’s local dataset. This ensures that clients with more data have a 
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Algorithm 1 C-PFL:Server
Input: global_rounds
Output: 𝑤(global_rounds)

global

1.Initialize global model with parameters 𝑤(0)
global

2.Initialize committee 𝐶 (0)

3.for 𝑖 = 0 to global_rounds do
4. 𝐶𝑙𝑖𝑒𝑛𝑡(𝑖) ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑠()
5. for each client 𝑘 ∈ 𝐶𝑙𝑖𝑒𝑛𝑡(𝑖) in parallel do

6. 𝑤(𝑖)
𝑘,𝑏𝑎𝑠𝑒 ← 𝑐𝑙𝑖𝑒𝑛𝑡𝐵𝑎𝑠𝑒𝑈𝑝𝑑𝑎𝑡𝑒𝑖(𝑤

(𝑖)
global)

7. if 1𝑚
𝑚
∑

𝑗=1
𝑉𝑗 (𝑤

(𝑖)
𝑘,𝑏𝑎𝑠𝑒, 𝐷𝑗 ) ≥ 𝜏 then

8. 𝑤(𝑖)
𝑘,𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 ← 𝑤(𝑖)

𝑘,𝑏𝑎𝑠𝑒
end 
else

9. 𝑤(𝑖)
𝑘,𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 ← ∅

end 
end 
10. 𝑊 (𝑖+1)

global ←
∑

𝑘∈𝐶𝑙𝑖𝑒𝑛𝑡(𝑞)
𝑛𝑘
𝑛 𝜔(𝑖)

𝑘,𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑

end 
11. Return 𝑤(global_rounds)

global

greater influence on the global model and contribute more significantly 
to its update. The aggregation formula is given by: 
𝑊 (𝑖+1)

𝑔𝑙𝑜𝑏𝑎𝑙 ←
∑

𝑘∈𝐶𝑙𝑖𝑒𝑛𝑡(𝑞)

𝑛𝑘
𝑛
𝜔(𝑖)
𝑘,𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 (5)

where:

• 𝑊 (𝑖+1)
𝑔𝑙𝑜𝑏𝑎𝑙 represents the parameters of the global model after round 

𝑖.
• 𝜔(𝑖)

𝑘,𝑞𝑢𝑎𝑙𝑖𝑓 𝑖𝑒𝑑 denotes the local model parameters from client 𝑘 in 
round 𝑖 that passed the accuracy threshold.

• 𝑛𝑘 is the size of the local dataset on client 𝑘.
• 𝑛 is the total number of data samples across all clients, i.e., 𝑛 =
∑𝐾

𝑘=1 𝑛𝑘.
• 𝐶𝑙𝑖𝑒𝑛𝑡(𝑞) denotes the set of clients whose models met the qualifi-
cation criteria.

During local training, each node only updates and submits the base 
part of the model, which improves training efficiency and reduces 
communication overhead, as described in Algorithm 2.
Algorithm 2 C-PFL:Client
Input: 𝑤global
Output: 𝑤𝑓𝑒𝑎𝑡
1.Copy 𝑤global to 𝑤𝑓𝑒𝑎𝑡
2.for epoch = 1 to 𝐸 do
3. Shuffle the local dataset 𝐷𝑖
4. Split 𝐷𝑖 into mini-batches {𝐵1, 𝐵2,… , 𝐵𝑚}
5. for each mini-batch 𝐵𝑗 do
6. Compute gradients: 𝑔𝑖 ← ∇𝐿(𝑤𝑙𝑜𝑐𝑎𝑙 , 𝐵𝑗 )
7. Update only feature extractor parameters:
𝑤feat ← 𝑤feat − 𝜂 ⋅ 𝑔𝑖|𝑤feat

end 
end 
8. Return 𝑤𝑓𝑒𝑎𝑡

4.3. Committee and threshold update

After the global model has been updated, it is necessary to update 
both the committee and the accuracy threshold. At the end of each 
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round of training, a new committee 𝑆 is selected from the set of 
clients whose local models have been verified. When each training 
node submits its local model, a score is calculated based on its data 
volume and accuracy. The score is recorded and accumulated round by 
round to form a cumulative contribution score that reflects the overall 
contribution of the node. New committee members will be selected 
from clients with the highest cumulative scores.

This strategy ensures that the committee is composed of nodes 
that have performed well in previous rounds, thereby improving the 
reliability and quality of model evaluation. In addition, this dynamic 
selection mechanism incentivizes clients to continuously improve their 
models to increase their likelihood of being selected for the committee.
Clients = {𝐶1, 𝐶2,… , 𝐶𝑚} (6)

Contribution𝑖 = 𝛼 ⋅ Ãcc𝑖 + (1 − 𝛼) ⋅ 𝑁̃𝑖 (7)

{𝐶(1), 𝐶(2),… , 𝐶(𝑚)} = sort(Clients, by = 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,descend) (8)

𝑆 = {𝐶(1), 𝐶(2),… , 𝐶(𝑛)} (9)

In the above formula, Ãcc𝑖 denotes the normalized validation accu-
racy of client 𝑖, which ensures that accuracy values are mapped to a 
uniform scale between 0 and 1: 

Ãcc𝑖 =
Acc𝑖 − min𝑗 Acc𝑗

max𝑗 Acc𝑗 − min𝑗 Acc𝑗
(10)

Here, Acc𝑖 represents the raw validation accuracy of client 𝑖, and 
min𝑗 Acc𝑗 , max𝑗 Acc𝑗 denote the minimum and maximum accuracy 
scores among all clients in the current round, respectively.

Similarly, 𝑁̃𝑖 represents the normalized local data size of client 𝑖, 
computed as: 

𝑁̃𝑖 =
𝑁𝑖

∑

𝑗 𝑁𝑗
(11)

where 𝑁𝑖 is the number of local samples held by client 𝑖, and the 
denominator is the total data volume across all participating clients.

The hyperparameter 𝛼 ∈ [0, 1] controls the relative importance of 
accuracy versus data volume in the final contribution score. A larger 𝛼
favors model performance as measured by validation accuracy, while 
a smaller 𝛼 gives more weight to the quantity of data provided. In 
our implementation, this formulation ensures that clients with valu-
able data distributions are not overlooked due to lower immediate
accuracy.

The procedure for updating the model accuracy threshold is pre-
sented in Algorithm 3. First (Lines 1–3), the algorithm calculates the 
number of accuracy values 𝑘, their mean 𝑥̄, and standard deviation 𝑠. 
Then (Lines 4–6), it computes the standard error 𝑆𝐸 and determines 
the lower confidence bound 𝐿𝐵 using the t-distribution critical value 
𝑡𝛼 at significance level 𝛼. Next (Line 7), the accuracy threshold is 
updated to the maximum of its current value and the calculated lower 
bound, ensuring statistically grounded adjustments. Finally (Line 8), 
the committee for the next round 𝑆(𝑖+1) is selected as the top-𝑛 clients 
based on their contribution values.

The threshold update leverages the confidence interval theory: 
𝑃 (𝜇 ≥ 𝑥̄−𝑡𝛼

𝑠
√

𝑘
) = 1−𝛼 where 𝜇 is the true mean accuracy. This provides 

probabilistic guarantees that the updated threshold reflects genuine 
performance improvements. The t-distribution accounts for sample size 
effects, with 𝑘 − 1 degrees of freedom ensuring robustness for small 
committees.

In C-PFL, the committee reaches consensus through a quantitative 
evaluation process. Specifically, each committee node validates the 
submitted backbone update on its local dataset, producing an accuracy 
score. These scores are averaged across all committee nodes (Eq.  (1)) 
and compared with the dynamically updated threshold (Eq.  (4)). An 
update is accepted only if the averaged score meets or exceeds this 
threshold; otherwise, it is rejected. Clients whose updates are unstable 
or noisy due to training or hardware limitations may be excluded from 
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Algorithm 3 Accuracy Threshold Update via Confidence Interval
Input: accuracies: List of accuracy values,
𝛼: Significance level (e.g., 0.05),
Clients: List of clients with contribution_values,
𝑛: Committee size
Output: Updated accuracy threshold, Selected committee 𝑆(𝑖+1)

 1.𝑘 ← len(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠)
2.𝑥̄ ← mean(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠)
3.𝑠 ← std(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠)
4.𝑆𝐸 ← 𝑠∕

√

𝑘 ; // Standard error of mean
5.𝑡𝛼 ← t-dist(𝑘 − 1, 𝛼) ; // t-value for 𝛼 significance
6.𝐿𝐵 ← 𝑥̄ − 𝑡𝛼 ⋅ 𝑆𝐸 ; // Lower confidence bound
7.𝑎𝑐𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← max(𝑎𝑐𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝐿𝐵)
8.𝑆(𝑖+1) ← Top𝑛 (sort(𝐶𝑙𝑖𝑒𝑛𝑡𝑠, by = contribution_value))

aggregation. C-PFL can optionally provide clients with feedback on 
their evaluation results, including per-committee-node accuracy scores 
and whether the final decision was above or below the threshold. 

To avoid evaluation bias and ensure that verification results gener-
alize to the entire population, the data distribution across the selected 
committee nodes should collectively cover the diversity of features and 
labels present in the federation. In our implementation, this is promoted 
by the dynamic committee selection strategy, which ranks clients by 
both validation accuracy and data volume, indirectly favoring clients 
with more diverse and representative local datasets.

Moreover, C-PFL mitigates residual bias through the final local 
personalization phase: after global training, each client fine-tunes its 
personalized head on its local data. This step allows the model to adapt 
to unique local distributions that may not be fully represented in the 
committee’s validation process, thereby reducing bias and improving 
overall generalizability in highly heterogeneous settings.

5. Experiments

5.1. Experimental setup

In this section, we compare C-PFL with six state-of-the-art feder-
ated learning methods—FedAvg (McMahan et al., 2016), FedGH (Yi 
et al., 2023), Ditto (Li et al., 2021c), GPFL (Zhang et al., 2023a), 
FedProto (Tan et al., 2022a), and LG-FedAvg (Liang et al., 2020)—on 
four benchmark datasets.

5.1.1. Datasets
To evaluate the performance of C-PFL on various classification 

tasks, we conducted experiments on four widely-used real-world image 
datasets: MNIST (Lecun et al., 1998), Fashion-MNIST (Han et al., 2017), 
CIFAR-10 (Krizhevsky, 2009), and CIFAR-100 (Krizhevsky et al., 2009).

• MNIST: This dataset consists of 70,000 grayscale images of hand-
written digits (0–9), with 60,000 images for training and 10,000 
for testing. Each image is of size 28 × 28 pixels.

• Fashion-MNIST: This dataset contains 70,000 grayscale images 
across 10 fashion categories (e.g., shirts, trousers, shoes), includ-
ing 60,000 training and 10,000 testing samples. Each image is 
28 × 28 pixels.

• CIFAR-10: The CIFAR-10 dataset contains 60,000 color images 
across 10 classes (e.g., airplane, car, bird), with 50,000 for train-
ing and 10,000 for testing. Each image is 32 × 32 pixels.

• CIFAR-100: This dataset comprises 60,000 color images divided 
into 100 categories. Each class contains 600 images, with 50,000 
used for training and 10,000 for testing. Image size is 32 × 32 
pixels.
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To simulate real-world scenarios, we applied two types of non-
IID (non-independent and identically distributed) data partitioning: 
practical non-IID and pathological non-IID. In practical non-IID, the 
distribution of labels across clients remains diverse but skewed — each 
client has access to most labels, but with biases toward certain classes. 
For example, in MNIST, each client may have a bias toward specific 
digits, but samples from other classes are still included. In pathological 
non-IID, clients receive data from only a single label class: for example, 
client 1 has only digit ‘0’, client 2 only ‘1’, etc. This extreme scenario 
reflects the worst-case heterogeneity in federated learning.

5.1.2. Software and hardware environment
Experiments were conducted on a system running Windows 10 

with Python 3.9 and PyTorch 1.13.1 (with CUDA 11.7 support). The 
hardware setup includes an Intel i5-13400KF CPU (4.60 GHz), an 
NVIDIA RTX 4060 GPU (8 GB), and 32 GB of RAM.

5.1.3. Model architecture
We employed a Convolutional Neural Network (CNN) as the base 

classifier for federated training. The model comprises two convolu-
tional layers with 5 × 5 kernels — the first with 32 channels and 
the second with 64 channels. Each convolutional layer is followed by 
a 2 × 2 max-pooling layer with a stride of 1 to reduce feature map 
dimensions. A fully connected layer with 512 units is used for feature 
extraction, followed by a softmax layer for classification. The fully con-
volutional and connected layers form the base part of the model, while 
the softmax layer represents the head. To simplify comparison, the 
same architecture is used across MNIST, Fashion-MNIST, and CIFAR-10 
tasks (with necessary adjustments to input dimensions).

The CNN model used in C-PFL is structured as follows: 
𝑓 (𝑥;𝑤base, 𝑤head) = ℎ(𝑥;𝑤head)◦𝑔(𝑥;𝑤base), (12)

where:

• 𝑔(𝑥;𝑤base) is the shared backbone network, consisting of:

– conv1: Conv2D(1→ 32, kernel=5) + ReLU + MaxPool
– conv2: Conv2D(32→ 64, kernel=5) + ReLU + MaxPool
– fc1: Linear(1024→ 512) + ReLU

• ℎ(𝑥;𝑤head) is the personalized classification head:

– fc: Linear(512→ 10)

During the federated training phase, only the parameters 𝑤base of 
the backbone are exchanged and updated across clients. The head 
parameters 𝑤head are frozen during global training and fine-tuned 
locally in a post-training phase to enable personalization.

5.1.4. Training configurations
The number of participating clients in federated learning experi-

ments ranges from 50 to 100. To emulate realistic and challenging 
conditions, datasets were partitioned into non-IID distributions, where 
the number of samples and label distribution vary randomly across 
clients. The learning rate is set to 0.005, and each client performs 5 
local updates per communication round with a batch size of 10 (see 
Tables  3 and 4). 

5.2. Normal training experiment

C-PFL consistently outperforms existing baseline methods under 
practical and pathological non-IID settings, across experiments with 50 
and 100 clients.

As we can see from the Table  3, in the practical non-IID setting, 
C-PFL achieves a precision of 90.56% and 52.04% in CIFAR-10 and 
CIFAR-100, respectively. This represents improvements of 1.48% and 
2.89% over FedProto (89.08% and 49.15%), and 2.11% and 5.64% over 
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Table 3
Average test accuracy (%) in homogeneous FL setting with 50 clients.
 Approach Practical non-IID Pathological non-IID
 MNIST FMNIST CIFAR10 CIFAR100 MNIST FMNIST CIFAR10 CIFAR100 
 FedAvg 98.37 87.50 61.90 28.23 97.55 82.56 61.50 28.68  
 FedGH 98.94 97.36 88.45 46.40 99.61 99.33 87.60 42.18  
 Ditto 98.91 97.27 88.03 44.18 99.50 99.26 87.46 40.51  
 GPFL 95.83 95.61 84.59 48.09 99.77 98.90 86.29 41.85  
 FedProto 99.12 97.62 89.08 49.15 99.68 99.38 88.74 44.37  
 LG-FedAvg 98.94 97.29 88.13 44.45 99.57 99.29 87.76 40.54  
 FedALA 98.49 97.51 89.53 50.56 99.74 99.53 89.16 44.49  
 FedGC 98.91 97.20 88.14 42.99 99.70 99.48 88.76 43.64  
 C-PFL 99.50 97.81 90.56 52.04 99.79 99.41 90.15 46.92  
Table 4
Average test accuracy (%) in homogeneous FL with 100 clients.
 Approach Practical non-IID Pathological non-IID
 MNIST FMNIST CIFAR10 CIFAR100 MNIST FMNIST CIFAR10 CIFAR100 
 FedAvg 98.94 89.28 60.26 26.45 97.43 81.92 59.53 28.57  
 FedGH 98.32 95.64 86.69 43.96 99.51 99.19 85.21 39.65  
 Ditto 98.14 95.72 86.20 40.88 99.37 98.96 85.22 37.31  
 GPFL 99.17 94.93 85.73 47.17 99.77 99.00 85.55 38.36  
 FedProto 98.55 98.54 86.72 46.02 99.58 99.22 86.41 41.58  
 LG-FedAvg 98.19 95.69 86.24 41.12 99.47 99.20 85.27 37.68  
 FedALA 99.26 96.16 87.76 47.83 99.80 99.13 87.41 42.49  
 FedGC 98.54 96.53 87.44 39.56 99.76 99.23 87.16 41.80  
 C-PFL 99.32 96.48 89.42 50.49 99.82 99.21 89.49 44.48  
FedGH (88.45% and 46.40%). In the pathological non-IID scenario, C-
PFL attains 90.15% precision in CIFAR-10 and 46.92% in CIFAR-100. 
These results outperform FedProto (88.74% and 44.37%) by 1.41% 
and 2.55%, and GPFL (86.29% and 41.85%) by 3.86% and 5.07%, 
respectively.

As we can see from the Table  4, when the number of clients in-
creases to 100,C-PFL still maintains superior performance. In the practi-
cal non-IID CIFAR-10 and CIFAR-100 datasets, C-PFL achieves 89.42% 
and 50.49% precision, surpassing FedProto (86.72% and 46.02%) by 
2.70% and 4.47%. Compared with FedGH (86.69% and 43.96%), the 
improvements are 2.73% and 6.53%, respectively, highlighting the 
stronger generalization capability of C-PFL. In the pathological setting 
without IID, C-PFL records the precision of 89.49% and 44.48% in 
CIFAR-10 and CIFAR-100, respectively, which significantly outper-
form FedProto (86.41% and 41.58%) by 3.08% and 2.90%, and Ditto 
(85.22% and 37.31%) by 4.27% and 7.17%.

In particular, C-PFL shows strong robustness, with minimal per-
formance fluctuation across varying degrees of data heterogeneity. 
Even under highly pathological non-IID conditions, C-PFL consistently 
maintains superior accuracy. In complex datasets such as CIFAR-100, 
C-PFL achieves accuracy around 50%, while traditional methods such 
as FedAvg and Ditto often fall below 30% or 40%.

These results collectively indicate that C-PFL delivers higher classi-
fication performance and ensures greater stability in diverse federated 
learning scenarios.

While C-PFL has been evaluated with up to 100 clients under 
synchronous training, its scalability to significantly larger federations 
(e.g., thousands of clients) and applicability in fully asynchronous 
environments have not yet been tested. A promising direction to ad-
dress these challenges is to adopt committee sampling or partial consen-
sus strategies, where only a dynamically sampled subset of commit-
tee members participates in each verification round, or consensus is 
reached based on a majority subset rather than all committee members. 
We plan to explore these extensions in future work to further enhance 
the scalability and flexibility of C-PFL.

5.3. Robustness to malicious clients

To evaluate the robustness of C-PFL against malicious or faulty 
clients, we simulate noise-injection attacks, where a subset of clients 
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adds Gaussian noise to their input data during local training. This 
method preserves the original labels but corrupts the input distribution, 
mimicking real-world scenarios such as sensor failures, adversarial 
corruption, or low-quality data acquisition.

Specifically, in each communication round, we randomly select a 
fixed percentage of clients (10%, 20%, 30%, or 40%) to act as noisy 
participants. For these clients, we apply additive Gaussian noise to each 
local sample: 
𝑥noisy = 𝑥 + (𝜇, 𝜎2) (13)

where 𝜇 and 𝜎 denote the noise mean and standard deviation, respec-
tively. In our experiments, we set 𝜇 = 0 and vary 𝜎 ∈ {0.1, 0.2, 0.3} to 
simulate increasing levels of corruption.

This attack model has been used in prior federated learning studies 
(e.g., Fang et al., 2020; Bagdasaryan et al., 2020) to evaluate model ro-
bustness under non-malicious but harmful local updates. By introducing 
this noise-based corruption, we assess whether C-PFL can effectively 
identify and mitigate the influence of degraded or low-quality model 
contributions.

Fig.  4 presents the performance degradation of various federated 
learning methods on three datasets (MNIST, Fashion-MNIST, and
CIFAR-10) as the proportion of malicious clients increases from 0% to 
40%. Each sub-figure corresponds to a dataset, with the 𝑥-axis repre-
senting the percentage of malicious clients and the 𝑦-axis indicating the 
model accuracy. Across all data sets, C-PFL shows the smallest accuracy 
drop as the proportion of malicious clients increases, highlighting its 
strong resilience to adversarial noise. Even when 40% of the clients 
are malicious, C-PFL outperforms the best baseline by 3.12% on MNIST, 
3.58% on Fashion-MNIST, and 6.96% on CIFAR-10.

In particular, on the CIFAR-10 dataset, C-PFL maintains stable per-
formance with only minor degradation as the percentage of malicious 
nodes increases: accuracy decreases by just 1.04%, 1.68%, 2.31%, and 
3.18% for 10%, 20%, 30%, and 40%, respectively. In contrast, the best-
performing baseline, FedBABU, experiences more severe drops under 
the same conditions: 1.54%, 4.62%, 7.36%, and 9.89%, respectively. 
This underscores C-PFL’s robustness, especially in scenarios with high 
adversarial presence. Methods such as FedGH and FedAvg show signif-
icantly worse robustness, with accuracy sharply declining beyond the 
proportion of malicious clients 10% and becoming nearly ineffective.
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Fig. 4. Performance of methods under the influence of noise on different datasets.
In this work, we restrict our robustness evaluation to label-flipping 
attacks. We do not include adaptive or backdoor attacks, primarily 
because such attacks often require task-specific trigger patterns to be 
realistically implemented. The backdoor trigger may lead to unfair or 
incomparable settings across methods. Nevertheless, we acknowledge 
that stealthy adversaries such as adaptive or backdoor attacks pose 
greater challenges, since they can evade detection by behaving nor-
mally on clean inputs. Extending C-PFL to defend against these stronger 
adversaries will be an important direction for future work.

5.4. Evaluation on text data

To assess the generalizability of C-PFL beyond image datasets, we 
conducted experiments on the AGNews (Zhang et al., 2015) dataset, 
a four-class news classification benchmark. Following a non-IID label 
distribution among clients, we compared C-PFL with six personalized 
FL baselines. As shown in Fig.  5, C-PFL achieves the best performance 
(90.60%). On IMDB (Maas et al., 2011), C-PFL achieves the highest 
accuracy of 99.81%, outperforming all six baselines. Compared to 
GPFL, which obtains the second-best performance of 99.48%, C-PFL 
yields an improvement of 0.33%.

We also note that FedGH and FedProto perform significantly worse 
on AGNews and IMDB. This can be attributed to their underlying 
assumptions: FedGH requires meaningful graph structures, which are 
not naturally present in textual data; FedProto relies on class-wise 
prototype representations in embedding space, which may be unstable 
in NLP tasks. In contrast, C-PFL does not impose such constraints and 
generalizes well across data modalities.

5.5. Overhead analysis

While C-PFL introduces additional steps such as committee-based 
validation and contribution scoring, it is essential to examine whether 
these mechanisms incur prohibitive computational costs in typical FL 
settings. Table  5 presents the average time per global training round 
across three benchmark datasets.

Compared to FedAvg, the lightest baseline, C-PFL incurs addi-
tional time of 8.23 s on MNIST (+27.7%), 10.41 s on Fashion-MNIST 
(+36.0%), and 8.22 s on CIFAR-10 (+24.5%). However, C-PFL remains 
10 
Table 5
The time consumed by each global round of each approach.
 Approach MNIST (s) Fashion-MNIST (s) CIFAR-10 (s) 
 FedAvg 29.71 28.94 33.62  
 FedProto 85.15 83.32 78.84  
 FedGH 33.48 33.35 37.93  
 Ditto 44.07 45.58 53.73  
 GPFL 71.48 78.61 64.40  
 LG-FedAvg 36.69 36.43 37.69  
 C-PFL 37.94 39.35 41.84  

significantly more efficient than methods such as FedProto (78–85 
s/round), GPFL (64–78 s/round), and Ditto (45–53 s/round), all of 
which introduce much higher round-level latency.

It is also notable that C-PFL’s overhead remains comparable to LG-
FedAvg and FedGH, which do not offer the same level of robustness or 
malicious client defense. Given C-PFL’s superior performance under ad-
versarial settings, we consider this overhead a practical and acceptable 
trade-off.

Furthermore, since only the backbone parameters are shared and 
validated, the communication payload is slightly reduced compared to 
full-model-sharing schemes. Committee nodes perform only lightweight 
forward inference on local data, and the cumulative scoring mechanism 
involves negligible computational logic (i.e., accuracy recording and 
averaging).

5.6. Local training analysis

To evaluate the personalization efficiency of C-PFL, we study the ef-
fect of fine-tuning epochs during the evaluation phase. Table  6 summa-
rizes the model accuracy in four datasets with different local fine-tuning 
settings. Results show that C-PFL can achieve effective personalization 
with minimal local training.

Specifically, significant accuracy gains are observed after only 5 
epochs of fine-tuning. For example, on CIFAR-10, the precision im-
proves from 53.86% to 89.15%, while on CIFAR-100 it increases from 
26.09% to 49.34%. Beyond 10 epochs, most datasets exhibit diminish-
ing returns, with accuracy improvements of less than 0.5% between 10 
and 20 epochs. Notably, Fashion-MNIST shows a slight performance 
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Fig. 5. Average test accuracy (%) on text dataset.
Fig. 6. Impact of committee node participation in training on model performance across different datasets.
drop of 0.13% at 20 epochs, suggesting potential overfitting. In gen-
eral, C-PFL achieves near-optimal personalized performance with as 
few as five local training epochs, effectively balancing personalization 
accuracy and computational efficiency, while minimizing the risk of 
overfitting.

5.7. Impact of committee selection on training

Fig.  6 illustrates the impact of the participation of committee nodes 
in training on global model accuracy in four datasets. MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100. The figure compares two settings: 
the nodes of the committee that participate in training (the blue curve 
represents those that participate in the training process, and the orange 
curve represents those that do not participate in the training process). 
The accuracy curves under both settings are nearly identical, exhibiting 
consistent trends and converging to similar final performance.

These results indicate that, under our experimental configuration, 
whether committee nodes participate in local training has a negligible 
influence on the overall model performance.
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This phenomenon can be attributed to two main reasons. First, 
committee nodes constitute a relatively small fraction of the total client 
population, and thus their contribution to model aggregation is limited. 
Second, the federated aggregation mechanism is inherently robust to 
individual node participation. It effectively integrates information from 
most regular clients to maintain stable global performance. As a result, 
even when committee nodes are restricted to evaluation and voting 
without local training, the overall model accuracy remains largely 
unaffected.

6. Conclusion

This paper presents C-PFL, a personalized federated learning ap-
proach featuring a committee-based validation mechanism that signif-
icantly bolsters model robustness and personalization in non-IID and 
adversarial environments. By leveraging dynamically selected commit-
tee nodes to validate and filter local model updates, C-PFL effectively 
discards low-quality or malicious contributions without relying on 
public datasets, thereby enhancing the stability and generalization of 
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Table 6
Performance (%) with different fine-tuning rounds.
 Dataset 0 Epochs 5 Epochs 10 Epochs 15 Epochs 20 Epochs 
 MNIST 97.46 99.27 99.28 99.29 99.32  
 Fashion-MNIST 85.42 96.16 96.33 96.44 96.31  
 CIFAR-10 53.86 89.15 89.30 89.34 89.30  
 CIFAR-100 26.09 49.34 50.19 50.25 50.21  

the global model. In addition, the model architecture of the method 
distinctly separates the base and personalized layers, allowing clients 
to preserve shared federated knowledge while catering to local per-
sonalization needs, thus adjusting easily to diverse data distributions 
between clients.

Extensive experiments on multiple real-world datasets demonstrate 
that C-PFL outperforms state-of-the-art methods in both accuracy and 
noise resilience. In particular, it maintains high performance even 
under high proportions of malicious client attacks, underscoring its 
practical applicability and reliability. Furthermore, the experimental 
results confirm that the participation of the committee nodes in train-
ing minimally affects the overall performance, offering a theoretical 
foundation to reduce their computational overhead.

6.1. Future work

In future work, we plan to extend C-PFL in two directions. We aim 
to explore dynamic committee scheduling mechanisms that adaptively 
adjust member selection based on evolving client behavior or data 
characteristics. Combining our framework with differential privacy 
techniques, such as DP-SGD or secure aggregation, could enhance 
client-side privacy while preserving robustness. These extensions will 
further enhance the applicability and trustworthiness of personalized 
federated learning in practical deployments. Furthermore, the present 
evaluation focuses exclusively on image and text datasets because 
our backbone–head split design may not fully capture the contextual 
dependencies inherent in natural language. Future work will assess the 
effectiveness of C-PFL on other data modalities, such as time-series or 
tabular datasets, to further validate its generalizability across diverse 
application domains.
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